
Integrating Oracle 10g XML: A Case Study

Coleman Leviter, Arrow Electronics

Introduction
XML DB was introduced in Oracle 8i. In Oracle 11g,
XML DB reached a new maturity level, providing high-
performance with native XML storage and retrieval
technology. The W3C XML data model is fully
immersed into the Oracle Database.

How is XML DB used in a project? What must one
know using XML DB? In this discussion, we will
address these issues and design criteria one might
consider using XML in a project.

XML or Extensible Markup Language means the
language can grow as required. You may include an
XML declaration line for the first line
(<?xml version="1.0"?>). You may
define your own elements or tag fields in the body of an
XML document. As long as the sender and receiver
agree on the format of an XML Document, there is
complete flexibility for its construct.

Throughout this paper, we will present several examples
of XML documents. We will present the project as well
as XML’s involvement. We hope the readers will
become familiar with XML by finding examples,
modifying them and using them in their own schema.
The WEB contains a large amount of XML material.
The last Google count (for XML) was 420,000,000 hits!
For those beginning an XML project, this establishes a
good starting point.

Project Overview
The project uses XML for communications between a
Warehouse Management System (WMS) and a
Transportation Management System (TMS). The
following reasons are given for using a TMS:

• Leave transportation decisions to a third party

system which has the expertise to add, drop and
manage shipping carriers

• Include rate shopping and efficient route selection
• Improve efficiency in the warehouse by removing

several independent workstations supplied by
different carriers leaving all transportation
management decisions in one workstation

When product ships from Arrow Electronics, Inc., the
customer may decide the mode of transportation. When
the choice is “best way”, a semi manual process selects a
carrier at the least cost. Human intervention is involved.
Different shipping workstations from various carriers
(i.e. DHL, BAX, LTL, Watkins, etc.) provide choices at
ship time. Shipping department managers make “best
way, cheapest cost” decisions.

As business grows, Arrow Electronics, Inc. desires to
increase efficiency in its shipping department. An
integrated and automated Transportation Management
System (TMS), which connects to its existing
Warehouse Management System (WMS), will provide
new shipping efficiencies over the previous semi manual
and time consuming system.

The steps for shipping product are:

1. Pack station operator prepares product and carton(s)

for shipping
2. Operator reviews shipping instructions and

determines if further shipping labels and documents
are required

3. If further labels and documents are required, the
operator walks to the shipping carrier’s stand alone
station (i.e. DHL, FEDEX, BAX, LTL, etc.) and
produces the necessary information, manually typing
in all the data

4. Material is now ready for pick up by the shipping
carrier

By using the TMS, we eliminate steps (a) and (b), which
are labor-intensive operations. All shipping labels and
pertinent documentation print at one station.

Presented is the WMS/TMS communications data flow:

Step 1) WMS Application issues an XML Request
 Message (XML Document) to MQ

 Write Queue
Step 2) TMS, listening for messages, receives the
 XML Request Message

www.nyoug.org 212.978.8890 1

Step 3) TMS formulates its answer and issues an
 XML Response Message to MQ Read

Queue
 Step 4) WMS, waiting for the response from Step 1,
 reads the XML Response Message

Figure I – WMS/TMS XML Document Data Flow

www.nyoug.org 212.978.8890 2

MQ Write Queue

MQ Read Queue

XML Request Message XML Request Message

XML Response XML Response

Step 1
Step 2

Step 3

Step 4

WMS

TMS

Message Comparison
Why use XML for messaging? To answer that question,
let us explore an alternate method of data transfer.

One predominant method of transferring messages
between two computers (or processes) is Binary
Messaging. This method continues to be in major use
with many legacy computers and embedded firmware
systems.

Data may be compressed, so encoding and reassembly
must all work in concert. If a transmitted data steam
contains 256 bits, the receiving side must also be in
alignment and decode those same 256 bits. All data is
position dependent.

When implementing this method, maintenance costs

may run very high because of the volume of software
that must be managed on the sender and receiver sides.
Troubleshooting adds to the cost as well.

Describing a system’s efficiency is the ratio of output to
input. Therefore, the efficiency of messages between
two computers is shown as:

 Output Message Data

Efficiency (%) = ------------- x 100 or ---------------------------- x 100
 Input Message Data + Overhead Data

Sales Complete Message (SCP)

Field Name Field Type Size Bit
Position

Overhead Data Alphanumeric 32 1 - 32
Message Code ‘SCP* ’ 4 33-36
Entering Location Alphanumeric 3 37-39
Sales Number Alphanumeric 6 40-45
Version Number Alphanumeric 2 46-47
Cartons for Shipping Numeric 2 48-49
Shipping Charges Alphanumeric 9/2 50-58
Date (YYMMDD) Alphanumeric 6 59-64
Carrier Alphanumeric 16 65-80
Carrier Number Alphanumeric 19 81-99

Shipment Weight Alphanumeric 4 100-103
Number of Orders Alphanumeric 2 104-105
Ship Code Alphanumeric 2 106-107
Spare 1 Alphanumeric 3 108-110
Spare 2 Numeric 7 111-117
Spare 3 Alphanumeric 4 118-121
Spare 4 Alphanumeric 1 122-122
Spare 5 Alphanumeric 1 123-123
End Alphanumeric 27 124-150

Table I – Typical Binary Interface Data Layout

Using the sample binary data layout from Table I we
have:

 118 bits (pos 33- 150)
 ---------------------- x 100 = 79% efficient
 (Message data) 118 bits + 32 bits (overhead data)

Let us look at an excerpt from a typical XML Document
(447 bytes):

<SHIPREQUEST>
 <!-- this is 182, svia J4 --> --------------------- comment
 <SHIPMENTINFO>
 <FACILITYCODE>RNO</FACILITYCODE>
 <TARGETDATE>05/10/2007</TARGETDATE>
 … ^------------------------ typical data…
 > ------------------
 <BOLDESCRIPTION>ELECTRONIC COMPONENTS</BOLDESCRIPTION>
 <NUMBEROFSKIDS/ ----- empty element

 <BOLCLASS>85</BOLCLASS> ^-------- typical data
 <BOLCOMMENTS/>
 </DOCDATA>
</SHIPREQUEST>
Figure II - Excerpt from an XML Message

Using the Efficiency Formula from above we have:

 447 Bytes Message Data (Figure II)
-- x 100
 447 Bytes Message Data + 3437 Bytes XML Element
Definition (= 3884 total bytes)

= 12 % efficient

Therefore, using an XML data message results in 12 %
efficiency, while using binary data transfer results in 78
% efficiency. It is obvious that the messages are quite
different, but an important observation is the overhead
ratio required to send data. XML messages far exceed
binary data messages, mainly due to the verbose nature
of the element names in the XML Document.

If the efficiency of an XML data message does not fare
well compared to a binary data message, then why use
XML data messaging? Here are arguments for and
against:

XML Arguments For Usage
• It is platform and system independent i.e. it can

work on any computer.
• It allows us to define our own tags thus making your

data content more clearly.
• XML has adopted a standard, ISO 10646 also

known as Unicode, which is a framework to encode

characters and it will support most languages, thus
not forcing people to use English for coding.

• Software can be developed to increase efficiency,
that is, encode the element tags on the transmission
as well on the receiving side.

• The code is easy to understand even for those
people who do not have any prior knowledge.

• XML DB has been available with Oracle 8i and
up

• XML is self-describing. For example it is
obvious from <lastname>Doe</lastname> that
this represents a name.

• Bandwidth issues can become non existent
using data compression techniques

XML Arguments Against Usage
• It requires a wide amount of bandwidth. (This

should improve in the future using data compression
techniques)

• It may require extensive processing time to decode
• Only newer software will be able to read and

understand XML. It may become costly and time
consuming to retrofit legacy code with XML

A good design decision rests with one’s ability to
analyze a problem and choose the proper tools. The
same applies when selecting XML or another data
communications method. In the previously described
application, the new TMS system already used XML.

www.nyoug.org 212.978.8890 3

Our system used Oracle 10g in which XML DB was
available. So the decision was based upon the
experience of the organization and product of a third
party package (TMS) already using XML. Although the
XML duty cycle is low, if the messaging frequency is
low (which was in our case), XML is certainly a viable
option. For example, if the application environment is
limited to human interaction with a computer and
waiting for an answer (i.e. credit card verification), XML
inefficiencies would not appear to present a problem. If
XML messages were used to guide a shuttlecraft into its
docking station, perhaps too many messages would
rapidly use up the bandwidth. Another example where
XML data transfer might not work: a central station
(monitoring burglar alarms) receiving video
transmissions of an alarm of a potential intruder. With

samplings of several seconds and several frames of a
possible intruder in the area, the data transmission with
compression may not exceed 250 Kbytes. This real time
video example may not be a candidate for XML.
However, this might be a viable candidate in the future
using data compression techniques.

XML Communications
Our message queuing system for XML communications
is IBM’s WebSphere MQ Message Queuing, which is in
use with many enterprise applications.

When we view XML Messages on MQ, we use a tool
called IBM Tivoli CandleNet Portal. Here is an extract
of a sample message using the tool:

Hexadecimal Data | Character Data
3C3F786D 6C207665 7273696F 6E3D2231 | *<?xml version="1*
2E302220 656E636F 64696E67 3D225554 | *.0" encoding="UT*
462D3822 3F3E3C53 48495052 4553504F | *F-8"?><SHIPRESPO*
4E53453E 3C505249 4E54464C 41473E4E | *NSE><PRINTFLAG>N*
3C2F5052 494E5446 4C41473E 3C504143 | *</PRINTFLAG><PAC*
4B414745 533E3C43 4152544F 4E4E554D | *KAGES><CARTONNUM*
4245523E 313C2F43 4152544F 4E4E554D | *BER>1</CARTONNUM*
4245523E 3C4D534E 3E333838 3C2F4D53 | *BER><MSN>388</MS*
4E3E3C54 5241434B 494E474E 554D4245 | *N><TRACKINGNUMBE*
523E315A 31323334 35363033 31323334 | *R>1Z123456031234*
39353234 3C2F5452 41434B49 4E474E55 | *9524</TRACKINGNU*
4D424552 3E3C4C41 42454C5A 504C3E37 | *MBER><LABELZPL>7*
45344134 31304430 41374535 33343433 | *E4A410D0A7E53443*
32333030 44304430 41354535 38343135 | *2300D0D0A5E58415*
45343334 39333133 33304430 44304135 | *E434931330D0D0A5*
45344334 38333032 43333035 45343635 | *E4C48302C305E465*
33304430 44304135 45353035 32333432 | *30D0D0A5E5052342*
43333432 43333235 45343635 33304430 | *C342C325E46530D0*
44304135 45343635 34333032 43333133 | *D0A5E4654302C313*

Figure III – Partial XML Document viewed using IBM Tivoli CandleNet Portal

The left side of Figure III shows the XML message in
hexadecimal; the right side shows the XML message.
The asterisks are not part of the data. Viewing XML
data in this manner aids in isolating problems when the
XML message is on its way to the receiver or arriving
from sender.

XML Document Construction
Properly formed XML documents contain (except where
noted) the following components:

• An optional declaration as the first line
(generally, it is good practice to include the
declaration, but it is not mandatory):

<?xml version="1.0" encoding="UTF-8"?>

where the mandatory first attribute identifies the XML
version number and the optional second attribute is the
encoding attribute which specifies to the XML parser
what character encoding the text is in for translation into
Unicode (Unicode is an industry standard allowing

www.nyoug.org 212.978.8890 4

computers to consistently represent and manipulate text
expressed in any of the world's writing systems).

• An optional comments section:

 <!-- this is a comment 182, svia J4 -->

A mandatory start tag and end tag as the root element:

<MAIN_TAG> < ------ start tag

</MAIN_TAG> < ------ end tag

And finally, a mandatory data element:

<Data_Section>this is a data
section</Data_Section>

So, at a minimum, one root element and one data
element constitutes a properly formed XML document.

Putting it all together we have:

<?xml version="1.0" encoding="UTF-8"?>
<!-- this is a comment 182, svia J4 -->
 < MAIN_TAG >
<Data_Section>this is a data
section</Data_Section>
</ MAIN_TAG >

The XML document fits a hierarchical model as
presented in the Figure IV:

Figure IV – Hierarchical Model of an XML
Document

where Node A is the root element and Node A1 … Node
A3b represents the data section.

XMLType Column

To create a sample table containing an XMLType
column, enter the following:

CREATE TABLE my_table (id number, xmlcol XMLTYPE);

The underlying type, XMLType is a CLOB, which
enables storage of up to 4GB of data. Additionally, you
may perform XPath queries on the XML Documents
residing in the column. By simply defining the column
(xmlcol) as a CLOB, XPath expression queries are not
possible. When storing XML documents into an
XMLType column, Oracle will raise an exception if the
XML document is not properly formed. If you want to
store the improperly formed document for later
evaluation, depending upon its length, it may be stored
in a CLOB type column.

When using XMLType columns in tables, it may be
helpful to use the pragma
AUTONOMOUS_TRANSACTION. When a
subprogram is marked with this pragma, it is possible to
perform rollbacks or commits without affecting
operations in the parent transaction. Basically, this
pragma works the same way as a sequence object.

XML Examples
In this section we will explore several XPath and SQLX
(or SQL/XML) examples for shredding and creating
XML Documents, respectively. Most of the code found
in these examples is similar to code from the project.
XPath or XML Path Language is a language for
selecting parts of an XML document and computing
values (strings, numbers, or Boolean values) based on
the content of an XML document. We will produce
several XML fragments using functions XMLElement(),
XMLAgg() and XMLForest(). We will demonstrate
document shredding using the XMLSequence() function
and the EXTRACT method.

SQLX Document Construction

XMLELEMENT()

The simplest SQLX Query uses the XMLElement()
function, which returns an
XMLType expression (XML fragment):

SELECT XMLELEMENT("Emp", 'jones')
employee FROM DUAL;

EMPLOYEE

www.nyoug.org 212.978.8890 5

<Emp>jones</Emp>

XMLForest()

This example, which uses XMLForest(), produces a
fully qualified XML document:

SELECT XMLType.getclobval(
XMLELEMENT("trial_1", XMLFOREST(id_num,
two_cardinal))
) as xmlexample1
FROM (select 1 as id_num, '1ST and 2ND'
as two_cardinal from dual)

<trial_1>
<ID_NUM>1</ID_NUM>
<TWO_CARDINAL>1ST and 2ND</TWO_CARDINAL>
</trial_1>

The XMLForest() function produces an XML fragment
that contains a set of XML elements. XMLElement()
uses the document fragment for children (or sub-
elements) of its element, which in this case is tag field
<trial_1>. XMLElement () returns a properly formatted
XML document. XMLType is a dedicated XML
datatype that is a CLOB type behind the scenes. It has a
number of member functions available to make the data
available to SQL. XMLForest’s arguments are
expressions or column names. XMLForest returns a
concatenated XML fragment. In our example, id_num
and two_cardinal are the alias names used in the
subquery in the FROM clause.

XMLAGG()

The first example returns an ordered set using the
XMLAgg() function:

SELECT XMLELEMENT("olin",
XMLAGG(XMLELEMENT("SALES_ORDER",
o.SORD_NUM||CHR(32)||o.sord_rel) ORDER BY
o.sord_num)) AS "sales order list"
FROM olin o
WHERE o.whse_code = 'PW'
AND ROWNUM < 6

<olin>
 <SALES_ORDER>3033920 09</SALES_ORDER>
 <SALES_ORDER>3372306 06</SALES_ORDER>
 <SALES_ORDER>3644585 02</SALES_ORDER>
 <SALES_ORDER>3662786 02</SALES_ORDER>

 <SALES_ORDER>3691640 02</SALES_ORDER>
</olin>

We have restricted the list to less than six elements. The
XMLAgg() function returns an XML fragment in an
XMLType by assembling XML fragments, with the
option of XML element sorting.

The XMLAgg() function assembles all the XML
elements into one XML document fragment. The outer
XMLElement() function, incorporates the XML
document fragment into its “olin” element as sub
elements.

The next XMLAgg() example assembles the XML
elements into one XML document fragment.
However, this time an XMLElement() function
returns an XML document fragment to its parent, an
XMLElement() function. After the entire SQLX
query is complete, the XML document fragment is
assembled by the XMLAgg() function.

SELECT XMLELEMENT("olin",
XMLAGG(XMLELEMENT("SALES_ORDER",
XMLELEMENT("detail_info",o.sord_num||CHR(
32)||o.sord_rel))))
AS "sales order list"
FROM olin o
WHERE o.branch_code = '91'
AND ROWNUM < 6

<o
 <SALES_ORDER>
lin>

 <detail_info>3033920 09</detail_info>
 </SALES_ORDER >
 ALES_ORDER> <S
 <detail_info>3372306 06</detail_info>
 </SALES_ORDER >
 <SALES_ORDER>
 <detail_info>3691640 02</detail_info>
 </SALES_ORDER >
 ALES_ORDER> <S
 <detail_info>3644585 02</detail_info>
 </SALES_ORDER >
 ALES_ORDER> <S
 <detail_info>3662786 02</detail_info>
 </SALES_ORDER>
</olin>

XPATH Document Shredding XPATH Document Shredding
XPath (or SQLX or SQL/XML) expressions are used to
shred XML Documents. Shredding an XML document

www.nyoug.org 212.978.8890 6

enables you to store data elements into a relational
database.

XMLSEQUENCE()

The XMLSequence() function returns a collection of
XMLType. This function in a Table clause can be used
to decompose the collection values into multiple rows.
This can be further processed in a standard SQL query.
The format clause ('/R/A[2]/B') indicates which child to
return while the [2] designation breaks it down further
signifying the node to return. The “extract('//B/text()')”
clause in the select statement requests the data contents
the of “B” node.

SELECT
value(T).extract('//Child/text()').getstr
ingval() XMLSequence_Example
FROM TABLE(XMLSequence(extract(XMLType('
<Root>
 <Parent>
 <Child>V1</Child>
 <Child>V2</Child>
 <Child>V3</Child>
 </Parent>
 <Parent>
 <Child>V4</Child>
 <Child>V5</Child>
 <Child>V6</Child>
 </Parent>
</Root>
'), '/Root/Parent[2]/Child'))) T

XMLSequence_EXAMPLE

V4
V5
V6

XPath Shredding Example – Putting It All
Together
In our final example we will shred parts of an XML
document containing parent nodes and children nodes.
We will demonstrate the method by which we shred
multiple child nodes and store them in a relational table.

<SHIPPINGRESU
 …

LTS>

 <CONTAINER>
 <CARTON>1</CARTON>
 <MSN>2710</MSN>

<TRACKING>1Z4R29X60200002014</TRACKING>
 <CHARGES>

 <TOTAL>36.76</TOTAL>
 <BASE>86.50</BASE>
 <ACCESSORIAL>
 <NAME>FUEL_SURCHARGE</NAME>
 <CHARGE>4.63</CHARGE>
 </ACCESSORIAL>
 <DISCOUNT>49.74</DISCOUNT>
 </CHARGES>
 RIGNINA GES> <O LCHAR
 <TOTAL>36.76</TOTAL>
 <BASE>86.50</BASE>
 <ACCESSORIAL>
 <NAME>FUEL_SURCHARGE</NAME>
 <CHARGE>4.63</CHARGE>
 </ACCESSOR IAL>
 <DISCOUNT>49.74</DISCOUNT>
 </ORIGNINALCHARGES>
 </CONTAINER>
 <CONTAINER>
 <CARTON>2</CARTON>
 <MSN>2711</M SN>
 < TRACKING >1Z4R29X60200002023</

 > TRACKING
 <CHAR GES>
 <TOTAL>36.76</TOTAL>
 <BASE>86.50</BASE>
 <ACCESSORIAL>
 <NAME>FUEL_SURCHARGE</NAME>
 <CHARGE>4.63</CHARGE>
 </ACCESSOR IAL>
 <DISCOUNT>49.74</DISCOUNT>
 </CHARGES>
 RIGNINA GES> <O LCHAR
 <TOTAL>36.76</TOTAL>
 <BASE>86.50</BASE>
 <ACCESSORIAL>
 <NAME>FUEL_SURCHARGE</NAME>
 <CHARGE>4.63</CHARGE>
 </ACCESSOR IAL>
 <DISCOUNT>49.74</DISCOUNT>
 </ORIGNINALCHARGES>
 </CONTAINER>
 <SHIPMENTINFO>
 <ORIGINALSHIPVIA>

<CARRIERSERVICE>CAL.EXPRESS</CARRIERSERVI
CE>
 </ORIGINALSHIPVIA>
 <SHIPVIA>

<CARRIERSERVICE>CAL.EXPRESS</CARRIERSERVI
CE>
 </SHIPVIA>
 </SHIPMENTINFO>
</SHIPPINGRESULTS>
Figure V – Shipping Results XML Document

www.nyoug.org 212.978.8890 7

Step 1) Create a Cursor for Data Shredding
-- Cursors for Parsing SHIPRESPONSE XML
 CURSOR packages_cur IS
 SELECT EXTRACT(value(CONTAINER),
'//CARTONNUMBER/text()').getStringVal()
AS CARTONNUMBER ,
 EXTRACT(value(CONTAINER),
'//MSN/text()').getStringVal() AS MSN,
 EXTRACT(value(CONTAINER),
'//TRACKING/text()').getStringVal() AS
TRACKING,
 EXTRACT(value(CONTAINER),
'//LABELZPL/text()').getClobVal() AS
LABELZPL,
 EXTRACT(value(CONTAINER),
'//CHARGES/TOTAL/text()').getStringVal()
AS TOTAL,
 EXTRACT(value(CONTAINER),
'//CHARGES/BASE/text()').getStringVal()
AS BASE,
 EXTRACT(value(CONTAINER),
'//CHARGES/DISCOUNT/text()').getStringVal
() AS DISCOUNT
 FROM
TABLE(XMLSequence(EXTRACT(XMLType(lcl_res
ponse_message), '//CONTAINER')))
CONTAINER;

Note: lcl_response_message is an XMLType that
contains an XML document similar to the one in Figure
V.

Step 2) Write the SQL Query

FOR packages_row IN packages_cur
LOOP
 INSERT INTO TMS_SHIP_CARTONS_GT (
 SO_NUM,
 SO_REL_NUM,
 PRNT_DATE,
 CRTN_NUM,
 MSTR_SEQ_NUM,
 TRACKING_NUM,
 TOTAL_CHARGE,
 BASE_CHARGE,
 LABEL_ZPL)
 VALUES (
 soh_orders_rec.so_num,
 soh_orders_rec.so_rel_num,
 soh_orders_rec.prnt_date,
 packages_row.CARTON, -----
packages_row: data access through cursor
 packages_row.MSN,
 packages_row.TRACKING,
 packages_row.TOTAL,

 packages_row.BASE,
 lcl_label_zpl_char);
END LOOP;

Conclusion
XML development began on this project several months
ago. We recently completed the majority of the SQLX
(XML document creation) and XPath (document
shredding) programming and began testing. Except for
adjusting the SQLX queries and changes to XPath
(parsing out similar tag fields under one parent), we
made no major revisions. As far as the project is
concerned, Oracle’s XML DB is a stable environment
and meets all the standards according to W3C.
However, programming in XML DB does require a bit
of some effort. The constructor XMLType creates an
instance of an XML object. We used it to convert a
CLOB into a properly qualified XML document for
storage into a table with an XMLType column. When
we shred XML documents we made extensive use of the
function EXTRACT (with methods getstringval and
getnumval). Once we developed the primitives for XML
fragment creation and XML document shredding, we
found ourselves using the same type of code over and
over again. The iterative process for developing a
project using Oracle’s XML DB is quite similar and an
extension to PL/SQL programming. We hope the
information presented here establishes a good starting
point for those embarking on a project using XML.

Biography
Coleman Leviter is employed as an IT Systems Software
Engineer at Arrow Electronics. He has presented at
IOUG's Collaborate 07. He is the WEB SIG chair and
sits on the steering committee at the NY Oracle Users'
Group. He has worked in the financial services industry
and the aerospace industry where he developed
Navigation, Flight Control and Reconnaissance software
for the F-14D Tomcat at Grumman Aerospace. Coleman
has a BSEE from Rochester Institute of Technology, an
MBA from C.W. Post and an MSCS from New York
Institute of Technology. He can be contacted at
cleviter@ieee.org

www.nyoug.org 212.978.8890 8

	Introduction
	Project Overview
	Message Comparison
	XML Arguments For Usage
	XML Arguments Against Usage
	XML Communications
	XML Document Construction
	XMLType Column
	XML Examples
	SQLX Document Construction

	XMLELEMENT()
	XMLForest()
	XMLAGG()
	XMLSEQUENCE()

