

AAAdddvvvaaannnccceeeddd
FFFeeeaaatttuuurrreeesss

TTTrrreeennntttooonnn CCCooommmpppuuuttteeerrr FFFeeessstttiiivvvaaalll
MMMaaayyy 111sssttt &&& 222nnnddd,,, 222000000444

MMMiiiccchhhaaaeeelll PPP... RRReeedddllliiiccchhh
SSSeeennniiiooorrr RRReeessseeeaaarrrccchhh TTTeeeccchhhnnniiiccciiiaaannn

EEExxxxxxooonnnMMMooobbbiiilll RRReeessseeeaaarrrccchhh &&& EEEnnngggiiinnneeeeeerrriiinnnggg
mmmiiiccchhhaaaeeelll...ppp...rrreeedddllliiiccchhh@@@eeexxxxxxooonnnmmmooobbbiiilll...cccooommm

 2

 Table of Contents

TABLE OF CONTENTS...2

INTRODUCTION..3

APPLETS AND APPLICATIONS...3

JAVABEANS..4

EXCEPTION HANDLING...5

JAVA DATABASE CONNECTIVITY (JDBC)..6

JAVA 2 COLLECTIONS..8

REFERENCES FOR FURTHER READING ...8

 3

1 Introduction

Java offers all of the advantages of object-oriented programming (OOP) by allowing the developer to create user-defined data
types for modeling real world situations. However, the real power within Java is contained in its features. Four main topics
will be covered in this document:
• Applets and Applications
• JavaBeans
• Exception handling
• Java Database Connectivity API

There will also be an introduction to the Java 2 Collections.

An example Java application was developed to demonstrate the content described in this document and the Introduction to
Java document. The application encapsulates sports data such as team name, wins, losses, etc. The source code can be
obtained from http://tcf.redlich.net/.

2 Applets and Applications

A Java applet requires the use of a browser, and is invoked within the <applet></applet> HTML tag pair. The
bytecode is executed with the JVM built-in to the browser. The initial point of execution is within a method called init().

A Java application is standalone and is normally executed from the command line using the local JVM. The initial point of
execution is within a static method called main(). The method signature is.

public static void main(String[] args)
 {
 ...
 }

This is, of course, similar to the C/C++ programming languages. However, the parameter list for handling command line
arguments can be omitted in C/C++, but the parameter list must be supplied even if there is no intention of using command
line arguments. Also missing from the parameter list is an integer for the number of arguments.

It is possible to write a Java program that can be used as an applet and an application. It must, of course, contain both
init() and main() methods.

The following diagram describes the process of developing an applet:

Text Editor

Text Editor

Applet Viewer

javac

Browser

.java file

.class file .html file

 4

The methods required for developing an applet are shown in the general source code example below:

// Java applet source code

import java.applet.*;
import java.awt.Graphics;
...

public class MyApplet extends Applet implements Runnable
 {
 public void MyApplet() // construction
 {...}
 public void init() // initialization
 {...}
 public void start() // starting
 {...}
 public void stop() // stopping
 {...}
 public void destroy() // destroying
 {...}
 public void paint(Graphics G) // painting
 {...}
 }

// HTML file that invokes applet

<html>
<head>
 <title>My Applet</title>
</head>

<body>

<hr>

<applet code="MyApplet.class" width="500" height="50">
 <param name="text" value="Welcome to my applet!">
</applet>

<hr>

</body>
</html>

3 JavaBeans

JavaBeans (or just Beans) is a method (sic) for developing reusable Java components that can be used in web applications,
most notably within Java Server Pages (JSPs). Beans easily store and exchange information. In order for a Java class to be a
bean, it must be developed according to the JavaBean specification:

• implements the Serializable interface
• contains a default constructor (for JSP pages)
• contains getter/setter methods for all the class members

The bean must implement the Serializable interface so that the bean's current state can be written to disk and recreated
between web server restarts.

 5

A default constructor is required when the bean will be used within a JSP page.

The getter and setter methods establish (set) and return (get) the current values of all the class members. These methods must
follow a standard naming convention that is relative to each of the class members. The first letter of each class member is in
lower case. The corresponding getter and setter methods start with the terms, get and set, and are completed with the
member name containing an upper case first letter. The term, is, may be used for a getter method that returns a boolean
value. For example:

public class SportsBean implements Serializable
 {
 private int win;
 private boolean empty;

 public Sport()
 {}

 public int getWin()
 {
 return win;
 }

 public void setWin(int win)
 {
 this.win = win;
 }

 public boolean isEmpty()
 {
 return empty;
 }

 public void setEmpty(boolean empty)
 {
 this.empty = empty;
 }
 }

In this example, the getter and setter methods for the class member, win, is getWin() and setWin() respectively.

4 Exception Handling

Detecting and handling errors within an application has traditionally been implemented using return codes. For example, a
function may return zero on success and non-zero on failure. This is, of course, how most of the standard C library functions
are defined. However, detecting and handling errors this way can become cumbersome and tedious especially in larger
applications. The application's program logic can be obscured as well.

The exception handling mechanism in Java is a more robust method for handling errors than fastidiously checking for error
codes. It is a convenient means for returning from deeply nested function calls when an exception is encountered. Unlike
C++, exception handling was built-in to the Java programming language from the very beginning. Exception handling is
implemented with the keywords try, throw, and catch. An exception is raised with a throw-expression at a point in the
code where an error may occur. The throw-expression has the form:

throw T;

 6

where T can be any data type for which there is an exception handler defined for that type. A try-block is a section of code
containing a throw-expression or a function containing a throw-expression. A catch clause defined immediately after the try-
block, handles exceptions. More than one catch clause can be defined. For example:

public class ExceptionTest
 {
 public static void main(String[] args)
 {
 try
 {
 initialize();
 }
 catch(Exception exception)
 {
 exception.printStackTrace();
 }
 }
 public void initialize() throws Exception
 {
 // contains code that may throw an Exception
 // type as specified
 }
 }

The Java library contains an extremely exhaustive list of defined exceptions for all types of errors. Most exceptions are
checked, i.e., the compiler enforces exception handling. If a certain method call is made without it being placed in a try
block, the compiler will flag this as an error. The compiler does not enforce unchecked exceptions.

Exceptions should be thrown for things that are truly exceptional. They should not be thrown to indicate special return
values.

5 Java Database Connectivity (JDBC)

The Java Database Connectivity (JDBC) API allows the developer to easily connect to, read, and manipulate popular
databases (Microsoft Access and SQL Server, Oracle, etc.), spreadsheets, and flat files for use in applications. The JDK
supplies a built-in driver for these databases that is used in conjunction with an Open Database Connectivity (ODBC)
connection to a particular database. Other, more complex drivers (ones that don't require an ODBC connection, for example)
must be obtained from a vendor, and referenced within the application. With only a few lines of code, a connection to a
database can be made, a query can be executed, and a result set can be displayed:

 7

public class DBTest
 {
 static public void main(String[] args)
 {
 String sql = "SELECT * FROM tblTimeZones;
 try
 {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Connection connection =
 DriverManager.getConnection("jdbc:odbc:timezones","","");
 Statement statement = connection.createStatement();
 ResultSet result = statement.executeQuery(sql);
 while(result.next())
 System.out.println(result.getDouble(1)
 + " " + result.getDouble(2));
 connection.close();
 }
 catch(SQLException exception)
 {}
 }
 }

The driver for most databases using an ODBC connection can be accessed via the built-in JdbcOdbcDriver that is
included in the Java Development Kit.

The example above assumes that a database exists with an ODBC connection named timezones, which is referenced in the
statement:

Connection connection = DriverManager.getConnection("jdbc:odbc:timezones","","");

and returns an instance of type Connection. The empty strings in the second and third parameters of the
getConnection() method are used for passing the userID and password of the database if they exist. The
connection object is then used to return an instance of type Statement as in the statement:

Statement statement = connection.createStatement();

The Statement object is used to ultimately obtain the desired result set based on a given query. In the example above, the
query, "SELECT * FROM tblTimeZones" is established as a string, and can be passed into the Statement object's
executeQuery() method. A ResultSet object is returned upon a successful execution of the query. Examining all the
rows of the result set is handled through a simple while loop:

while(result.next())
 System.out.println(result.getDouble(1) + " " + result.getDouble(2));

The ResultSet object's next() method returns a boolean to indicate if another row of data is available. The two calls to the
getDouble() method assumes that values of type double are returned in columns 1 and 2 of the result set. Getter
methods for all the built-in data types have been defined in ResultSet. Other examples include getInt() and
getString(). The columns of the result set are one-based (as opposed to zero-based), that is the value of first column in
each row is retrieved by getDouble(1) (or getString(1) or getInt(1)), and so on.

The only drawback to the above example is that the data types for the columns of the result set must be known in advance. If
the schema of the database is changed, the above code can break. Other options are available, such as calling stored
procedures and obtaining the result sets meta data.

 8

6 Java 2 Collections

{this section is under construction…}

7 References for Further Reading

The references listed below are only a small sampling of resources where further information on Java can be obtained:

• Thinking in Java (book)
• Bruce Eckel
• ISBN
• http://www.bruceeckel.com/

• Java Developer's Journal (monthly periodical)
• http://www.javadevelopersjournal.com/

• Core Java 2, Volume I - Fundamentals (book)
• Cay S. Horstmann and Gary Cornell
• ISBN 0-13-081933-6
• http://www.sun.com/books/catalog/horstmann6/

• Core Java 2, Volume II - Advanced Features (book)
• Cay S. Horstmann and Gary Cornell
• ISBN 0-13-081934-4
• http://www.sun.com/books/catalog/horstmann7/

• The Java Tutorial for the Real World (book)
• Yakov Fain
• ISBN 0-9718439-0-2
• http://www.smartdataprocessing.com/

	Table of Contents
	Introduction
	JavaBeans
	Exception Handling
	Java Database Connectivity (JDBC)
	Java 2 Collections
	References for Further Reading

