Transitioning a lab-based course online: Key changes

Kevin P. Pintong
Dr. Douglas H. Summerville
Trenton Computer Festival
March 10, 2012
Background

• Why online education?
What solutions already exist?

• MIT OpenCourseware
• Binghamton University EngiNET
Models of online education

- Satellite model
- Hybrid model
- Fully online
What’s missing?

• Technical courses
• Lab-based courses
• High quality courses
Background

• In 2010 we ran a circuits course utilizing conventional techniques in an online setting.
• We designed a new pedagogical method specifically for the online environment.
• In 2011, we ran a circuits course using the new pedagogical method.
Prior research

• Key points:

• Multimedia is less important than content itself \[R.\] Mayer et al.]

• Balance of discussion in asynchronous communication is important \[Nussbaum, Golanics\]

• People can’t pay attention that long \[Percival, Johnstone\]
Course redesign

• In 2010, first online circuits course at BU was run.

• Through this exploration, learned about problems with lecture and laboratory
  — Data from previous papers and the course were collected.
Discovery

• Online circuits course was run in summer 2010
Major Changes

- Shorter Lecture
- Emphasis on problem solving
- Emphasis on conceptual understanding
- Redesign of laboratory for online environment
Pedagogical Model

- Short Lecture
  - More Adv. Examples
    - Core Element
    - Core Element
  - Experiment
    - Comprehension quiz or activity
    - Series of harder questions with ability for student to practice
      - Self-driven path back to earlier modules if student chooses/needs (Cleaver, IEEE)
  - Multiple Modules
    - Module 1
    - Module 2
    - Module 3
    - Module 4
    - Module 5
    - Module 6
    - Final Module

- Multiple Modules
  - Multiple Modules
  - Midterm & Final Projects

Binghamton University
State University of New York
Lecture Problems

• Too long.
• Most students stopped watching them.
• Students complained that it would be more useful to just read the textbook.
Lecture Length

• Percival & Johnstone (198X)
  – 15-20 minutes without refocusing

• Fact: People do not like long and boring lectures

• Fact: Lectures don’t deliver experience
Lecture Quality

• Observation of Dr. Twigg and Dr. Summerville lecture styles
  – Clean slides
  – Limited content
  – Reduce amount of content while increasing focus of content
  – Clearly defined problems
Lecture redesign

• Redesign lectures for today’s online students
  – 15-20 minutes
  – Only include essential content
  – Competition for attention
  – Move non-essential content to separate modules
Lecture Example

- Insufficient Time.
Laboratory Background

• In 2010, we attempted to recreate a typical on campus laboratory.

• USB Oscilloscope, sound card function generator, hand-held multimeter, batteries for power supply
Laboratory Problems

- Students do not have lab equipment (Multimeter, oscilloscope, function generator)
- Students do not have much help from teaching assistants
- Students are working alone.
Laboratory ➔ Experiments

• Existing labs provide too much information. Students frequently complained that it was too long.
  – Students frequently were lost in the write up and did not know how to use the laboratory equipment.
Laboratory Solution

• Laboratory section becomes “experimental section”
  – KCL, KVL, etc.
  – Each experiment is one page, and asks a student to validate one concept they learned in lecture.
  – Provide video tutorials on how to use equipment.
  – Increase number of experiments, decrease complexity of each experiment

  • 6 labs → approx 17 experiments
Laboratory Solution

• Oscilloscope and Function generator
  – USB Sound card
    • Limited frequency and voltage

• Does this really matter?
Laboratory Solution

• Power Supply
  – One 9 V and two 1.5 V batteries
  – Take advantage of non-ideal nature of batteries
    • Ideal vs. non-ideal sources experiment
    • What is ground? experiment
Laboratory Example

(a) Measuring
   a. Given the circuits in (a) and (b) below, where you would probe to measure current, voltage, and resistance for $R_1$? Please indicate on the diagrams below or explain.

(b) Parallel Resistors
   a. Build the following diagram on your breadboard with 10k resistors.

   ![Diagram of parallel resistors]

   i. What can you say about the voltage in parallel resistors?
   ii. What can you say about the current in parallel resistors?
   iii. What can you say about the equivalent resistance in parallel?
   iv. Swap one of the resistors out for a 1 ohm resistor. What can you say if there are resistors in parallel with one resistor much smaller than the others?
Concept Inventory Development

• Each question tests one concept.
• Each answer choice is carefully designed to include something that the student might do wrong if they do not have a clear understanding of the concept.

• Let’s go over key elements of a CI question.
Voltage Division

- What is the steady-state voltage, $V_o$, in terms of $R_1$ and $R_2$? Assume that there is no load at $V_o$. 

\[ \frac{V_0}{R_1} + \frac{V_0}{R_2} = \frac{20}{R_1 + R_2} \]
Major-specific problems

• Non-major students frequently showed little knowledge gain.

• Comments include:
  – “Why do I have to learn this ****?”
  – “This is so irrelevant to me as a ***** engineer.”
Major-specific problems

- As a service course to other majors, the course can be re-designed to include elements of mechanical and systems engineering.
  - Relate circuits to problems faced in their field.
Op Amp

- What is the voltage gain of this circuit in terms of R1 and R2? Assume an ideal op-amp.
You are given two power supplies and one microcontroller. Each power supply has a single floating output of **0 to 15 V**. Please draw wires from the power supply to connect the microcontroller to **-15 V, 5V, and ground**.

Note that there may be more than one valid solution.
Ground (2)
Results

• Two examinations were given:
  – Small scale concept inventory
    • 4 questions
    • Large number of students
    • Sophomore to senior data
  – Large scale concept inventory
    • 35 questions
    • Small number of students
    • Used to compare
Results of small scale test

Small Concept Inventory Comparison: Online vs traditional students

<table>
<thead>
<tr>
<th>Category</th>
<th>Online</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Division</td>
<td>93%</td>
<td>71%</td>
</tr>
<tr>
<td>Resistor Combination</td>
<td>88%</td>
<td>88%</td>
</tr>
<tr>
<td>Op Amp Analysis</td>
<td>88%</td>
<td>79%</td>
</tr>
<tr>
<td>Practical Voltage Relationship Formulation</td>
<td>69%</td>
<td>26%</td>
</tr>
<tr>
<td>Overall</td>
<td>79%</td>
<td>71%</td>
</tr>
</tbody>
</table>
Large scale Concept Inventory

• Given to 100+ traditional and online students.
• Data presented. Not enough time to go through every question in that concept inventory. (Also boring.)
• Developed with Dr. Summerville and Dr. Twigg
Circuits Concept Inventory

• Examination we are using to compare online and offline courses
• Approximately 35 questions
• Preliminary on campus course data is available
• 75% of questions answered correctly
## Concept Inventory: Fulfillment of Learning Outcomes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>% Online students meeting objective</th>
<th>% Traditional students meeting objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSC</td>
<td>Apply PSC to a circuit to determine whether a circuit is consuming or supplying power.</td>
<td>100%</td>
<td>79%</td>
</tr>
<tr>
<td>Kirchhoff's Laws</td>
<td>Use KVL and KCL in simplest circuits.</td>
<td>60%</td>
<td>68%</td>
</tr>
<tr>
<td>Voltage and Current Divider</td>
<td>Identify when and how to use the voltage and current divider.</td>
<td>90%</td>
<td>72%</td>
</tr>
<tr>
<td>Loop Analysis</td>
<td>Apply loop analysis to solve a circuit containing at the minimum one current source, one voltage source, and one dependent source with two or more loops.</td>
<td>60%</td>
<td>55%</td>
</tr>
</tbody>
</table>
# Focus Points

<table>
<thead>
<tr>
<th>Topic</th>
<th>Emphasis</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ground</strong></td>
<td>Emphasize the arbitrary nature of ground and why it is not always &quot;zero&quot;.</td>
<td>Most students could not understand that ground is an arbitrary construct and that ground is not necessarily zero.</td>
</tr>
<tr>
<td><strong>Kirchoff's Laws</strong></td>
<td>Emphasize KVL and KCL over voltage and current divider.</td>
<td>Students frequently tried to use voltage or current divider in situations where they should have used KVL or KCL. It would not represent a problem if students applied the divider correctly.</td>
</tr>
<tr>
<td><strong>Op Amps</strong></td>
<td>Emphasize the ideal Op Amp model and deemphasize topologies.</td>
<td>Students frequently tried to match the topology of the circuit and failed to solve the circuit correctly. Students memorizing rather than deriving solutions were more likely to get the correct answer.</td>
</tr>
</tbody>
</table>
Concluding thoughts

• Main points:
  – Provide short lecture
  – Adapt laboratories to available equipment.
  – Design shorter and more frequent experiments
Conclusion

• **Review**
  – Review your existing content.

• **Edit**
  – Edit the content to be usable in an online setting.

• **Condense**
  – Reduce the existing content to a more manageable size.

• **Adapt**
  – Adapt the equipment to fit within the bounds of the concepts.

• **Legitimize**
  – Find unique methods of verifying student learning.

• **Lead**
  – Iterate over again. Keep improving your material.
References


[10] 2010 Circuits Course. See [35]


References [1/3]


• [26] K. Pintong, D. Summerville, "Transitioning A Lab-based course to an online format" ASEE Annual Conference 2011.

References [2/3]


- [26] K. Pintong, D. Summerville, "Transitioning A Lab-based course to an online format" ASEE Annual Conference 2011.


• [35] K. Pintong, D. Summerville, "Transitioning A Lab-based course to an online format" ASEE Annual Conference 2011 Vancouver, BC.