
 1

Upgrading Computers for Memory-Hungry Applications

Binglong Xie
binglong.xie@siemens.com
Siemens Corporate Research

755 College Road East
Princeton, NJ 08540

Abstract
Having enough physical computer memory for a data intensive application is crucial for
its performance to avoid page swapping to and from the disk. The first approach is to add
more memory to a current 32-bit x86 PC. This approach gives the application a
maximum of 3 GB user memory address space, and generally the application can only
make use of that amount of physical memory at most. If more memory is needed,
upgrading to an x64 PC is recommended. Theoretically there is almost no limitation to
the user memory address space with x64, and the physical memory available to the
application is much more a direct effect of adding physical memory without the address
space barrier.

1. Introduction
Having enough memory for a data intensive application is crucial for its performance.
When not all the data/code can be held in physical memory, a modern virtual memory
operating system automatically uses disk paging files in the background to simulate the
physical memory. Because the disk is much slower than physical memory, page
swapping slows the application significantly. It is therefore very important that the
application can get enough physical memory.

To see how page swapping can hurt an application, let’s have a look at the speeds of the
RAM (Random Access Memory, i.e. physical memory) and the hard drive respectively.
There are a lot of different RAM types, and what is widely used in the PC world is a
category called DRAM (Dynamic RAM), which is relatively easy to get a high capacity
but needs refreshing from time to time to prevent data loss (thus called dynamic). The
DRAM varies from out-of-date FPM-DRAM (Fast Page Mode DRAM), EDO-DRAM
(Extended Data Out DRAM), SDRAM (Synchronous DRAM), to relatively recent
RDRAM (Rambus DRAM), DDR-SDRAM (Double Data Rate SDRAM) and DDR2-
SDRAM. For a typical 667MHz DDR2-SDRAM module, the data transfer speed is rated
at PC2-5300, i.e. 5300MB/s (667MHz, 8-byte width). However, for a typical
SATA/PATA (Serial/Parallel Advanced Technology Attachment) hard drive, the data
transfer rate varies between 20MB/s and 60MB/s, depending on whether it is a read or
write operation. The hard drive is about 100 times slower than the RAM. Even worse, the
hard drive has an access time, about 10ms, to move its magnetic head to the right location
if it is not there yet, before it can start transferring data. On the other hand, the 667MHz
DDR2-SDRAM only needs a few cycles to start data transfer, where a cycle is about 3ns,
or 0.003ms. Even though there are different caches for both the RAM and the hard drive,

 2

the overall conclusion is that extensive page swapping with a hard drive file should be
avoided by all means.

What kinds of applications are memory-hungry? Well, any application that handles large
amount of data is a good candidate of memory hunger. This includes a lot of server
applications, such as Microsoft Exchange Server, Microsoft SQL Server, etc. But do not
assume that memory hogs are far from you when you are working on a workstation. No
matter if you are a statistician, chemist, or a computer vision researcher, you may find
your application is well within this category. For example, in computer vision, machine
learning is often used to train a classifier from a large number of training samples (e.g.,
tens of thousands), and on each training example there are thousands of features used.
Such a training job needs a lot of memory, and without enough physical memory the
training can last for days. It is often forced to use less training samples and features for
faster training, at the cost of a less effective classifier as a result.

It is clear that adding more physical memory to the computer is necessary for the
memory-hungry applications.

2. Overview of 32-bit PC Memory Hierarchy
A lot of current PC systems are based on 32-bit processors, such as Intel Pentium 4 and
AMD Athlon. They are 32-bit processors, because the data width (i.e., the native operand
width) is 32-bit. These PCs run Microsoft Windows 2000/XP/Vista 32-bit version. Our
application runs on top of the 32-bit Windows OS (Operating System).

Isn’t it obvious that we add enough physical memory to the computer and we are done? Is
it true that, if I add 8GB of RAM to the computer my application can then fully use 8GB
for its huge data? Actually it is not so simple. To really understand how the application
gets the physical memory, we need to look step by step into the hierarchy of memory
management of a 32-bit PC, in aligning to our purpose of answering the question.

2.1 Physical RAM
Firs of all, you need to check your mother board specifications, and find out how many
RAM slots are available onboard, what is the maximum capacity that each slot can
support, and the maximum physical RAM that a mother board can support. It is
absolutely meaningless to add more memory than the mother board can support. In a lot
of 32-bit systems, you cannot add more than 4GB of RAM. But some of them may allow
you to add at most 64GB to it.

2.2 CPU Physical Address Space
A CPU (Central Processing Unit, or processor) accesses the RAM by giving address
signals on its address pins. The physical address space consists of all possible
combinations of the address pin signals. Earlier 32-bit CPUs have 32 address pins
(2^32=4GB physical address space). Later Pentium series CPUs have 36 address lines
(2^36=64GB physical address space), and new AMD CPUs have 44 address lines
(2^44=16TB physical address space). The 32-bit CPUs normally only use 32-bit address

 3

width and the extra pins are not used. However, if the PAE (Physical Address Extension)
feature of the CPU is enabled, these CPUs can fully use all the address pins and access
memory units beyond 4GB.

The mother board is designed taking into account the CPU’s addressing capability, so it’s
not the case that you add RAM there but the CPU can only access part of it, with one
important exception. The exception comes from memory-mapped devices and ROM in
the system. The memory-mapped devices, such as a video adaptor in every PC, and
POST ROM, also take certain portion of the physical address space, and can push some
RAM out of the physical address space such that not all RAM is available to the CPU.
For example, if the CPU has 4GB physical address space, and you add 4GB RAM to the
system, you are bound to lose a few MB, maybe more than 100MB of RAM, because of
the memory-mapped devices and ROM. Your system may report RAM size smaller than
4GB. In such a case, the accessible physical RAM is limited by the physical address
space.

2.3 OS Physical Address Space and Physical RAM Available to
OS
Even if a CPU may support 16TB physical address space with its PAE enabled, the
operating system may not. In reality, 32-bit Windows NT1 (including Windows
2000/XP/Vista in this context) normally supports 4GB physical address space. Only
when 32-bit NT’s PAE feature is enabled (which in turn enables the CPU’s PAE), it
supports more than 4GB. Windows NT limits its supported physical address space in
64GB. The OS physical address space is a subset of the CPU physical address space.
Within the OS physical address space, you can deduct the portion that is used by
memory-mapped devices and/or ROM, and the rest is the maximal physical RAM
available to the OS. The physical RAM available to the OS is what our system is running
on, and this number is the one you really want to maximize when you add RAM modules
to your motherboard.

2.4 Virtual Memory
An application normally does not use physical memory directly. Mostly since the
introduction of Intel 80386 CPU, the PC architecture has been redesigned that there is a
new layer, called virtual memory, standing between the application (and actually most
parts of the OS itself), and the physical memory.

1 Windows NT is a family of fully 32-bit operating systems by Microsoft for business users, including
Windows NT 3.1, Windows NT 3.5, Windows NT 3.51 and Windows NT 4.0. Later versions (including
64-bit versions) have not been marketed as Windows NT, but internally they are on the NT basis, including
Windows 2000 (NT 5.0), Windows XP (NT 5.1), Windows Server 2003 (NT 5.2) and Windows Vista (NT
6.0). Windows NT is different from Microsoft’s consumer-oriented 16-bit/32-bit hybrid operating systems,
such as Windows 3.x and Windows 9x/Me, which have come to an end and merged to the NT tree, and
have already been replaced by Windows XP Home and hopefully by newly released Windows Vista Home
editions.

 4

2.4.1 Virtual Memory Manager
The Virtual Memory Manager (VMM) is one of the most important parts of modern
operation systems. The Windows NT VMM is a kernel component. It is responsible to
create seemingly much larger total memory available to running processes than the
physical memory. The VMM partitions the physical memory into pages (4KB each by
default), and the pages are backed by the disk files. The VMM itself lives in the
nonpaged pool, which is the physical memory never paged to disk, due to its critical role.

The application always accesses memory using a virtual address. The virtual address is
translated using the page directory and page table to get the page without the awareness
of the application. In the translation process, there are two possibilities:

a). The page is in physical memory, so the translation is successful, and the
application can access the memory location;

b). The page is not in physical memory. A page fault happens, and the VMM
takes the control. The VMM finds an available physical memory page, loads the
page from the backing disk file, and resumes the application code to access the
memory location.

Because the access to memory happens in sequel, the VMM is able to use a small amount
of physical memory to service accesses to large amount of pages on disk, thus creating
virtual memory that can be far bigger than physical memory. With a few exceptions, it is
actually much like that the virtual memory is always in a big paging file, and the physical
memory is just like cache of the virtual memory.

The VMM has an important data structure called the page-frame database. This database
contains the status of each physical memory page. The NT VMM periodically steals used
physical memory pages from processes to maintain a healthy level of free physical
memory pages to satisfy future memory requests. It does this in two steps:

a). First, it marks the page as transitional and monitor if page faults happen for
that page. If that happens it just return the page back to the process at no cost.

b). Second, if it sees that the process does not ask for it in long time, it concludes
that it's safe to steal it. Then it flushes the page to paging file and marks it free and
available to future page requests.

The total effect of VMM is that if there is insufficient physical memory for data or code,
it kicks out the data and code that are not accessed recently to the paging file on disk, and
the system still runs with reasonable performance.

2.4.2 Total Virtual Memory
The total virtual memory of the system can be defined as the space allocated to hold data
or code to all the processes running at any instant. The total virtual memory is a dynamic
amount while the system is running. Generally, it consists of three portions:

 5

a) Paging files
In 32-bit Windows NT, there can be at most 16 paging files. The paging files are
the common backing of virtual memory.

b) Memory mapped files
Memory mapped files are generalized paging files. Because the whole virtual
memory mechanism, it is easy to use a general disk file instead of a paging file as
backing. However, memory mapped files are not managed and accessed like the
memory; it has to be used through a special API (Application Programming
Interface) with a file mapping object. A file mapping object, however, can also be
created on the paging files.

c) AWE (Address Windowing Extensions) memory
AWE is a method to allocate physical memory directly in an application. We will
cover that later.

As you can see, the total virtual memory is not limited by physical address space or
physical memory available. Rather, it is limited by mostly the disk space.

2.5 Virtual Address Space
In 32-bit Windows NT, each process has full flat 32-bit virtual address space, that is,
4GB. That means any pointer in the process cannot be larger than 32-bit. Windows NT
distinguishes the user mode process and kernel mode process. In the user mode process,
its address space is less than 4GB; normally it is the lower 2GB, with some exceptions,
no larger than lower 3GB. The upper 2GB or 1GB is only used for the kernel. Because
each process gets its own separate virtual address space, and Windows NT can create
many processes, the total virtual address space to all processes is unbounded.

The virtual memory that a user process can access may be larger than its virtual address
space. For example, the application can create a file mapping object that spans larger the
4GB virtual address space, either through a memory mapped file or on paging files, given
that the disk space is enough or the paging file space is available. Notice the function
CreateFileMapping() needs two DWORD arguments to represent the file mapping
object’s maximum size, i.e., the size can be larger than 4GB. The application can allocate
physical memory through AWE so that the total memory for a process could be larger
than 2GB/3GB virtual address space.

However, the virtual memory that a user process can access simultaneously is always
limited by the user virtual address space size, 2GB/3GB. Even if the process can own
more virtual memory, it has to slide the virtual memory into the window of the virtual
address space before it can access it. That means extra effort than just dereferencing a
pointer. For example, before you can access the virtual memory of file mapping, you
have to call MapViewOfFile() to map it into the virtual address space; in the case of
AWE, you have to call MapUserPhysicalPages() to map the AWE memory into
the virtual address space. This results in non-portable and hard-to-maintain code.

 6

2.6 Win32 Virtual Memory API

Figure 1: Layered Memory Management in Win32 (Image from MSDN)

The NT kernel actually supports other subsystems, but our interest is only on Win32
subsystem. From Figure 1, you can see that both Virtual Memory API (VMAPI) and
Memory Mapped File API talk to NT VMM directly. Since we are more interested on the
portable memory programming, we focus more on the VMAPI.

The VMAPI distinguishes two resources you can allocate: the virtual address and the
virtual memory, both in pages (4KB by default). Both resources are managed through
VMAPI functions such as VirtualAlloc()/VirtualFree().

The virtual address that you can allocate with VMAPI is limited by the user virtual
address space, and any other already allocated address blocks. Allocating the virtual
address is also called reserving memory address, which is a cheap and fast operation.
What it really does is to create an entry in the VAD (Virtual Address Database) of the
process, marking that the address block is reserved. This step is useful if you want to
have a continuous virtual address block before other memory requests in the same
process get their hands on there.

You can also allocate virtual memory in pages with VMAPI, and this is called
committing memory. The committed memory could be in either physical memory or the
paging files. Be careful, committed memory does not mean physical memory. When you
access a committed page, a page fault happens if it is currently only in the paging file.
Figure 2 shows an example of various memory amounts, where Commit Charge Total is
the total committed memory in the system.

 7

Figure 2: Example of Various Memory Amounts (Screenshot)

2.7 Address Windowing Extensions (AWE)
As the name suggests, AWE windows the physical memory into the virtual memory
address space. AWE is the only way that a user mode application can allocate guaranteed
physical memory, which is normally the privilege of kernel components, such as device
drivers.

Just like VMAPI, AWE is also a low-level feature of Windows NT, and has to be used
with VMAPI. The prerequisite of using AWE is that your application must have the Lock
Pages in Memory privilege. To obtain this privilege, an administrator must add Lock
Pages in Memory to the user's User Rights Assignments.

In your application, AllocateUserPhysicalPages() is used to allocate physical
memory pages. The VMAPI function VirtualAlloc() with arguments
MEM_RESERVE|MEM_PHYSICAL and PAGE_READWRITE is used to get a virtual
address block. MapUserPhysicalPages() is then used to attach the physical
memory to the virtual address block, and then the application can access the allocated
memory.

 8

Another benefit of AWE is that you can allocate a lot of physical memory, only limited
by the physical memory available to the OS. That says, if the OS sees more than 4GB, the
AWE can also possibly allocate more than 4GB, up to the Windows NT limit of 64GB,
with NT’s PAE enabled. However, the AWE physical memory accessible to your
application at any instant is less than the user virtual address space of course.

2.8 Win32 Heap Management
Heaps provide memory management that isolates the OS dependent low-level details
from an application. For example, a virtual memory system uses a page as the smallest
memory allocation unit (in Win32, 4KB), but a heap would allow you to efficiently
allocate much smaller objects, for example, an integer of 4 bytes. Win32 Heap
Management is the direct layer over VMAPI and is the general heap for all other heap
types on Win32.

A Win32 heap is used through HeapAlloc()/HeapFree(). Multiple Win32 heaps
can be managed through HeapCreate() and HeapDestroy() in each process.
Having multiple heaps provides a powerful means for special purposes. For example, you
can use a separate heap for some functionality and do not track all allocations, and in the
end you can just destroy the heap and all the allocations are automatically reclaimed. For
each Win32 process, Windows creates a default heap, which can be obtained by calling
GetProcessHeap().You can instruct the linker the committed and reserved sizes of
the default heap for faster/smoother heap growing, but they are not meant to limit the
heap size. The heap can grow to the extent only limited by virtual address space or virtual
memory size. Upon process termination, all Win32 heaps in the process are automatically
destroyed.

2.9 Global and Local Memory Functions
For historical reasons, there are two sets of memory management functions, the global
and local memory functions for managing the default heap of a Win32 process:
GlobalAlloc()/GlobalFree(), and LocalAlloc()/LocalFree(). Both
actually use GetProcessHeap() to get the default heap and then use Win32 heap
functions HeapAlloc()/HeapFree() to access the heap, so they are actually
identical in Win32. If your application does not use more than one heap, using either
GlobalAlloc()/LocalAlloc() is enough.

2.10 The C Run-Time Heap
Your application is a program written in a programming language, or in multiple
programming languages in mixture. Nevertheless, the native API of Win32 is in the C
programming language. So I assume our application is written with C.

By default, the C memory functions malloc()/free() and C++ operators
new/delete2 give you access to the C Run-Time (CRT) heap. This is probably the

2 C++ is open to usage of other memory instead of the CRT heap for the new operators implemented by the
compiler. In addition, the user application can also overload the class-specific and/or global new operators
to use other underlying memory management.

 9

most used heap in portable applications. In Win32, the CRT heap is also implemented
using the default heap of Win32 process. If you only use one heap in your application,
there is no reason to not use malloc()/free()or new/delete for maximal
portability. malloc() is equivalent to GlobalAlloc()with GMEM_FIXED flag so
the return is an pointer instead of a handle that requires locking before accessing memory.

3. Maximize Memory for Your Application
Get back to the question, how can you get more physical memory for your Win32
application?

3.1 Comparison of Memory Allocations in an Application
Before we can answer the question, let’s first look how an application obtains memory
programmatically. As being examined in the previous section, an application has various
approaches to get memory, as listed in Table 1.

From Table 1, it is clear that AWE is the only method that you can get guaranteed
physical memory, which is capped by the available physical memory to the operating
system. However, there are two problems with it. First, AWE is not portable, so your
application can not be compiled for example on Linux. Second, because the virtual
address space is between 2GB and 3GB, the application has to use mapping/remapping to
access AWE physical memory larger than the virtual address space, and this is very
tedious.

File mapping can get you virtual memory more than the virtual address space too, but
again mapping/remapping is needed. And, it is also platform dependent.

Table 1: Different Methods for Application Process to Allocate Memory

Memory Allocation
Methods

Virtual
address
space

Memory
maximum

Memory
Type Portability

VM API 2GB/3GB 2GB/3GB Virtual Win32
Win32 heap 2GB/3GB 2GB/3GB Virtual Win32
Global/Local

heap 2GB/3GB 2GB/3GB Virtual Win32 Heap

CRT heap 2GB/3GB 2GB/3GB Virtual ANSI / ISO
On regular

file 2GB/3GB Virtual Virtual Win32 File
mapping On paging

files 2GB/3GB Virtual Virtual Win32

AWE 2GB/3GB Physical Physical Win32

Among all the heap memory management methods, the obvious winner is the CRT heap
if you do not need multiple heaps in a process, because it is the only portable one. With

 10

the CRT heap a Win32 process can get at most 2GB/3GB virtual memory without
mapping/remapping.

VMAPI is a low-level API, both coarse and non-portable for an application, and is not
normally used.

As observed, it is common for all methods that the 2GB/3GB virtual address space
limitation plagues an application. If the application uses less than so much memory, that
is fine; otherwise, painstaking mapping/remapping has to be carried out to bring other
virtual/physical memory into scope. This is unfortunate for Win32 applications.

If you can afford mapping/remapping, as well as non-portability, AWE may be your
choice when you need a lot of physical memory. File mapping can also give you a lot of
memory but it is virtual memory and could be on disk.

In other situations you will use the CRT heap, because it is portable and does not provide
less functionalities than other heaps or VM API for a normal application. Our interest is
actually mainly on the CRT heap memory.

3.2 3GB Virtual Address Space
As mentioned before, the virtual address space of a Win32 user mode process is normally
2GB, from 0x0000 0000 to 0x7FFF FFFF. There are some spots that are not available to
the application process, but let us skip the details for now. The kernel uses the upper 2GB,
i.e., 0x8000 0000 to 0xFFFF FFFF.

We talked about 3GB, but that is not automatically available. That is, in general you will
not be able to allocate memory more than 2GB, nor will you get a pointer beyond
0x7FFF FFFF. If you have such a pointer and you try to access memory there, you get
memory access violation and the process is terminated by Windows.

Since 2GB is not really a large number for memory hog applications, we really want to
push the limit to 3GB. There is a special boot option, /3GB, for some versions of
Windows NT. When this option is added, Windows boots with its kernel squeezed in
upper 1GB virtual address space (0xC000 0000 to 0xFFFF FFFF), so that the lower 3GB
(0x0000 0000 to 0xBFFF FFFF) is available to each application. Now the applications
are given the opportunity to allocate more than 2GB, up to 3GB virtual address blocks.
Warning: In some Windows versions, /3GB only compacts the kernel to 1GB address
space, but does not really give 3GB address space to the user process. These versions are
only used to test the kernel mode components such as device drivers.

For an application to be able to utilize the extra 1GB virtual address space, however, it
must be linked with /LARGEADDRESSAWARE link option, otherwise it only sees the
normal 2GB address space available. If what you get is an executable, you can use the
tool ImageCfg or EditBin to set the corresponding flag in the executable file such that it
is large address aware. In both cases, you need to make sure that the pointer arithmetic in
the application is compatible with 2GB+ memory space, i.e., the executable code must

 11

not assume that all pointers live below 2GB. Normally this is about overflow,
signed/unsigned operations etc. related to the pointers. It is probably dangerous to just
enable that flag and assume the application can use 3GB.

However, /3GB does not come for free. Using /3GB may give the Windows kernel a hard
time. The kernel has to shrink its stuff into a smaller space. The biggest victim is the
kernel mode file cache, and it is bounded to be shrunk if /3GB is used. So if your
application uses a lot of file I/O, even if you get more memory space, you may lose the
performance here. Sometimes, a video card driver needing a big kernel aperture (memory
used to communicate between the video card and main memory), e.g., a few hundreds
MB, may fail to load. In other instances, when the kernel tries to allocate some memory
and it could not fit into the 1GB, you get the doomed blue screen error. These all say that
you may experience an instable system with /3GB.

Windows provides another complementary boot option, /USERVA, to help. With
/USERVA, you can fine-tune the virtual address space to the user process, between
2048MB (2GB) and 3072MB (3GB), so that the kernel can get more than 1GB to run
stably. For example, /3GB /USERVA=2900 option gives user processes 2900MB address
space, and kernel gets 1196MB, instead of 1024MB. You can experiment this number
and stop at a point that both your OS and your application are happy hopefully.

One thing you may want to follow is, unload all unnecessary devices, close all
unnecessary applications, and yield more memory and resource for both your application
and the rest of system.

3.3 What Is Available in 3GB Virtual Address Space
Even given /3GB boot option, if you think you can really malloc() 3GB memory for
your application data, you are wrong. Before your first line of code in main(), the entry
point of your C/C++ application, runs, some spots of the user virtual address space has
already been taken. Below is just an incomplete list:

a). There is a no man's island of 64KB near the 2GB boundary (slightly below
0x7FFF FFFF) and the virtual address is never allocated there (a burden coming
from Windows NT common code base for also Alpha AXP processors).

b). Before your process starts, Windows must set up the environment variable
block and other process related data (such as data structure for the default heap) in
your virtual address space.

c). The executable of your process takes memory address space. Normally it is
loaded at 0x0040 0000.

d). Your application always needs to call operating system services (that is what
the OS is supposed to do). There are the Win32 subsystem DLLs (Dynamic-Link
Library) interfacing the application to the kernel. They are always loaded into

 12

your user address space, normally close below 0x7FFF FFFF. For example, on
my system, Kernel32.DLL loads at 0x7C80 0000.

e). Your application may be linked with other DLLs. For example, if your
application uses OLE, the OLE DLLs are loaded at 0x5XXX XXXX. If you use
other third party DLLs, they are also loaded somewhere in the virtual address
space.

Given the items that take your precious virtual address space, only the free holes left are
for your application to allocate memory. Obviously, the largest block of virtual address
block you can allocate is the largest free hole.

Figure 3: Example of Free Virtual Address Blocks without /3GB

Figure 4: Example of Free Virtual Address Blocks with /3GB

FREE: 0x00000000, +0x00010000, end 0x00010000 (total 64 KB)
FREE: 0x00011000, +0x0000f000, end 0x00020000 (total 60 KB)
FREE: 0x00021000, +0x0000f000, end 0x00030000 (total 60 KB)
FREE: 0x00133000, +0x0000d000, end 0x00140000 (total 52 KB)
FREE: 0x00276000, +0x0000a000, end 0x00280000 (total 40 KB)
FREE: 0x002BD000, +0x00003000, end 0x002C0000 (total 12 KB)
FREE: 0x00301000, +0x0000f000, end 0x00310000 (total 60 KB)
FREE: 0x00316000, +0x0000a000, end 0x00320000 (total 40 KB)
FREE: 0x00333000, +0x000cd000, end 0x00400000 (total 820 KB)
FREE: 0x0040B000, +0x7c3f5000, end 0x7C800000 (total 2035668 KB)
FREE: 0x7C8F4000, +0x0000c000, end 0x7C900000 (total 48 KB)
FREE: 0x7C9B0000, +0x02d40000, end 0x7F6F0000 (total 46336 KB)
FREE: 0x7F7F0000, +0x007c0000, end 0x7FFB0000 (total 7936 KB)
FREE: 0x7FFD4000, +0x00009000, end 0x7FFDD000 (total 36 KB)
FREE: 0x7FFDF000, +0x00001000, end 0x7FFE0000 (total 4 KB)

FREE: 0x00000000, +0x00010000, end 0x00010000 (total 64 KB)
FREE: 0x00011000, +0x0000f000, end 0x00020000 (total 60 KB)
FREE: 0x00021000, +0x0000f000, end 0x00030000 (total 60 KB)
FREE: 0x00133000, +0x0000d000, end 0x00140000 (total 52 KB)
FREE: 0x00276000, +0x0000a000, end 0x00280000 (total 40 KB)
FREE: 0x002BD000, +0x00003000, end 0x002C0000 (total 12 KB)
FREE: 0x00301000, +0x0000f000, end 0x00310000 (total 60 KB)
FREE: 0x00316000, +0x0000a000, end 0x00320000 (total 40 KB)
FREE: 0x00333000, +0x000cd000, end 0x00400000 (total 820 KB)
FREE: 0x0040B000, +0x7c3f5000, end 0x7C800000 (total 2035668 KB)
FREE: 0x7C8F4000, +0x0000c000, end 0x7C900000 (total 48 KB)
FREE: 0x7C9B0000, +0x02d40000, end 0x7F6F0000 (total 46336 KB)
FREE: 0x7F7F0000, +0x007f0000, end 0x7FFE0000 (total 8128 KB)
FREE: 0x7FFE1000, +0x3ffcf000, end 0xBFFB0000 (total 1048380 KB)
FREE: 0xBFFD4000, +0x00006000, end 0xBFFDA000 (total 24 KB)
FREE: 0xBFFDB000, +0x00004000, end 0xBFFDF000 (total 16 KB)

 13

I built a very simple C/C++ application that walks through the free holes in the virtual
address space using VMAPI function VirtualQuery(). (The code is attached in the
appendix.) It does not use any fancy DLL that fragments its virtual address space, and its
results are shown in Figure 3 and Figure 4.

The two listings show that below 2GB, the largest free block is 2035668KB, or 1988MB.
It is smaller than 2048MB (2GB), but actually not too far (only 60MB difference). When
/3GB is enabled, the second largest free block is 1048380KB, or 1023MB, starting at
0x7FFE1000. This is the real extra gift that /3GB provides. But the 1988MB and
1023MB are not possible to be combined into a contiguous chunk, due to the stuff that
lives in between.

As a side notice, you can also notice that the 1988MB block starts at 0x0040B000. That
means my executable roughly occupies from 0x0040 0000 to 0040 B000, which is about
44KB, i.e., a really small program.

Sometimes in an application, not all allocated memory blocks are used equally frequently.
The less used memory blocks may be put in paging files if the physical memory is low,
and you may only experience little performance degrading, but these memory blocks still
use your address space. The result is that your virtual address space runs out so that you
cannot allocate new memory, before the physical memory is exhausted. This is the exact
reason why the Microsoft Exchange Server suggests /3GB boot option when you have
just more than 1GB physical memory.

3.4 DLL Rebasing
In real applications, you can not expect to have an application as small as the free virtual
address block walker. That means, more or less, the application may be complex and may
need to link to other DLLs.

The DLLs normally do not take a lot of memory space for their code sections. I have
never seen DLL files like more than 10MB. However, if your application needs large
chunks of contiguous memory, linking to DLLs could give you trouble.

This is because each DLL just like your application has its base, which is the preferred
location in the virtual address space of your process. If Windows does not find any
conflict, i.e., no other code or data is using the same base location, the DLL is loaded
there. Now assume you application is linked to a few third party DLLs that use scattered
bases, then your virtual address space is soon fragmented and even the largest free hole is
not big enough for your application.

Because a lot of parts of a DLL are read only, Windows create file mapping for these
parts, so that they are backed by the DLL file3 instead of the paging files, and the paging
file space is saved. The file mapping is injected into the virtual address space at the base

3 The file mapping is also used for certain parts of the application EXE file when it is launched for running.
This is why you can not move, delete, or modify a DLL or EXE file when it is running, because the file is
locked as backing of virtual memory.

 14

of the DLL for all processes that use the DLL. Keeping the same base address in all
processes is very important for sharing the DLL virtual memory blocks, because when
the DLL is built, its code and data are hard coded using the assumed base. Changing the
base would have to modify all the spots affected by the assumed base, which are recorded
as entries of the relocation table of the DLL. Otherwise, the DLL refers to wrong
locations in the process.

If Windows finds out that a DLL cannot be loaded at its preferred base for your process
because that location is already used, Windows has to rebase the DLL. Rebasing has
several consequences. Windows needs to find another location that can accommodate the
DLL in your virtual address space. Since it needs to relocate thus modify the DLL
contents, it cannot use the DLL file as backing. Windows has to use the paging files as
backing for the relocated DLL. It also known that Windows does not share the rebased
DLL among processes, probably due to that it is harder to coordinate a new base of the
DLL among all processes using it. Even if rebasing reduces the available paging file
space, it does not waste your virtual address space. The virtual memory overhead is
probably not a big issue if the DLL is not huge. The rebasing can be slow in walking
through all the relocation table entries and applying changes, but this probably only
happens when the program starts, so it is okay. More concern is on where in the virtual
address space Windows puts the DLL. Fortunately, it is reported that Windows tries to
find the location down from the 2GB boundary for a DLL to be rebased, so it does not
randomly take unused portion of your big free chunk in the virtual address space.

Maybe it is more important to check the DLL file’s base, because Windows tries to load
the DLL at its preferred base as the first step. The default DLL base is 0x1000 0000 when
it is built, just like 0x0040 0000 for an EXE. There is a “base address” option in the
linker to change an executable’s base to any location in user address space. When there
are multiple DLLs used in one application, some people use some schemes to assign
different bases to different DLLs to avoid rebasing. This could be a bad thing for your
memory hungry application if the DLL bases create very fragmented free blocks in the
virtual address space. If your application uses the DLLs with cold links, i.e., the DLL is
not loaded programmatically by LoadLibrary(), you can use Microsoft Visual
Studio’s Dependency tool to check the used DLLs of your application, and it also shows
the bases of the DLLs.

One of the key subsystem DLLs, Ntdll.DLL, has some hard coded fixed addresses such
that it is not even relocatable. Windows never rebase these DLLs, and they have to sit at
the exact locations slightly below 2GB in the address space of every process. This
contributes to the fact that you can only get around 2GB but not 3GB of free chunk even
if you have /3GB enabled.

These are the suggestions to avoid or mitigate the DLL fragmenting free virtual address
space. First, avoid using DLLs, use static libraries if possible. This could stop creating
some small fragments, for example, the fragment between 0x0040 0000 and 0x1000 0000,
which is about 252MB. If you cannot avoid using DLLs, check their bases and maybe

 15

you need to rebuild them with bases that can optimize the layout of your virtual address
space for bigger free address chunks.

3.5 Physical Address Extension (PAE)
Getting virtual address space is one side of the problem, and getting physical memory is
the other. As you have known, to get more physical memory for your application, you
probably need to get more physical memory available for Windows NT. This may not be
always true actually, and we will see it soon.

PAE (Physical Address Extension) is a boot option for Windows to enable both itself and
the processors to use more address lines to address more than 4GB of physical memory
space. When /PAE option is used in booting Windows, the OS breaks the barrier of 4GB
and sees more than 4GB of physical memory, if available. For example, when PAE is not
enabled and you insert 4GB RAM to your system, some of the RAM goes beyond 4GB
due to memory mapped devices and ROM, and is lost. If you enable PAE, this portion of
RAM can be used by the system now.

However, PAE is a processor and OS feature. It does not have an API, and it does not
break the 4GB virtual address space barrier for each process. If your process does not use
AWE, the benefit of PAE is not evident for a single process immediately. PAE enables
the OS to use more physical memory, thus the set of processes can use more physical
memory, so any single process may be less subject to page faults and the benefits are
really here.

PAE also comes at a cost. Because PAE needs extra address bits, the Page Directory
Entry (PDE) and page table entry (PTE) to describe a (4KB) memory page are larger.
Non-PAE system uses 4-byte PDEs and PTEs, but PAE system uses 8-byte PDEs and
PTEs. The result is that a 4KB page now has 512 PDEs or PTEs, instead of 1024 PDEs or
PTEs. This means that Windows has to use more pages, i.e., memory, to manage the data
pages that are available to processes. This situation exacerbates when /3GB is used,
because the kernel has tighter memory space for bigger page directories and page tables.
Table 2 shows that when /3GB is used together with /PAE, the OS can only make use of
at most 16GB physical memory space. Taking out the memory mapped devices and ROM,
the OS can only address slightly less than 16GB physical memory.

Table 2: /PAE and /3GB Effects on 32-bit Windows

Boot options Physical address space
available to OS

Virtual address space
per user process

 4GB 2GB
/3GB 4GB 3GB

 /PAE 64GB 2GB
/3GB /PAE 16GB 3GB

 16

3.6 Conclusion
For 32-bit applications, there are a few factors affecting the memory that an application
can use. We assume the application uses the CRT heap for its memory management in
most cases.

Unless you use non-portable and mapping/remapping based file mapping or AWE, your
application process cannot access more than 2GB memory, no matter it is virtual memory
or physical memory, due to virtual memory space limitation. By using /3GB and/or
/USERVA boot options, this limitation can be relaxed to at most 3GB. You may also
want to check the DLL bases to guard against excessive virtual address space
fragmentation.

You can add as much as physical memory to the system and increase the physical
memory available to the OS, but it does not increase the physical memory available to the
application process beyond the 2GB/3GB virtual address limitation. Your application can
get at most 2GB/3GB physical memory given there is enough physical memory, after
deducting the physical memory used by the operating itself and other processes. Because
the memory your application process directly gets is virtual memory, Windows has full
power of putting your data/code in paging files at its own discretion. By unloading
unnecessary system components, such as disabling devices and stopping services not in
use, and closing unnecessary applications, your application has more chance to have its
code and data in physical memory up to 2GB/3GB upper limit.

4. Memory on 64-bit PC
As we have already seen, to deal with applications requiring large memory is very tricky
in 32-bit Windows, due to the virtual address space and probably also windows physical
address space limitations. Fortunately, both 64-bit processors and 64-bit Windows are out
to help. In a 64-bit system, the limitation is obviously not the address space, because it
has 16EB (Exa Bytes), i.e., 2^64 bytes, or 16 Giga GB, or 16Mega TB, in theory.

In the PC world, the 64-bit architecture is an extension to the 16-bit and 32-bit x86, and is
called x86-64, or x64 in short. x64 includes AMD’s AMD64 and Intel’s Intel64 (the two
have only minor differences). Although Microsoft also has some Windows versions
supporting Intel’s Itanium 64-bit processors (IA64), IA64 was not designed for
desktop/workstation applications and clearly x64 will be the one that replaces the current
32-bit x86 architecture.

There is no application that would require 16EB memory in the near future, so current
x64 CPUs do not really have 64 address pins to have 64-bit physical addresses. For
example, the first x64 CPU, AMD Opteron, implements 40-bit physical address (1TB)
and 48-bit virtual address (256TB). New AMD64 CPUs implement 52-bit physical (4PB,
Peta Bytes) address and 64-bit virtual address (16EB). Initial Intel64 processors had 36-
bit physical address (64GB), and the new ones have 40-bit physical address (1TB).

 17

There are two categories of Windows x64 editions available: Windows XP/Vista x64
Editions and Windows Server 2003 x64 Editions, for desktop and server systems
respectively. Windows x64 uses 44-bit virtual address (16TB). The lower half of that,
8TB (from 0x0000 0000 0000 0000 to 0x0000 07FF FFFF FFFF) is available for each
user mode process; and the upper 8TB (from 0xFFFF F800 0000 0000 to 0xFFFF FFFF
FFFF FFFF) is reserved for the kernel. There is a huge gap between the two 8TB blocks
in the 64-bit virtual address space. This area is for the user address to grow up in and
kernel address to grow down in on future Windows editions, without disrupting backward
system compatibility. The physical memory sizes supported are different for different
Windows x64 editions, as listed in Table 3.

Table 3: Maximum RAM Supported by Windows x64 Editions

Windows x64 Editions Maximum RAM Supported
Windows XP Professional x64 128GB
Windows Vista Home Basic x64 8GB
Windows Vista Home Premium x64 16GB
Windows Vista Business x64 128+GB
Windows Vista Enterprise x64 128+GB
Windows Vista Ultimate x64 128+GB
Windows Server 2003 Standard x64 32GB
Windows Server 2003 Enterprise x64 1TB
Windows Server 2003 Datacenter x64 1TB

Windows x64 is backward compatible with Win32 applications, so your Win32
application can still run under Windows x64. There is also a very nice feature of
Windows x64. If your Win32 application is linked with /LARGEADDRESSAWARE
flag, the user mode virtual address space is neither 2GB, nor 3GB, but full 4GB.
Windows x64 just put its kernel completely out of the 4GB address space of a Win32
process. This is a free gift of Windows x64 without you rewriting anything.

To fully leverage the power of 64-bit systems, you need to write your application in 64-
bit. This opens the door to almost unlimited memory. (Well, ironically, I remember that
people said similar things when they moved from 16-bit to 32-bit, when 4GB memory
was not imaginable and everybody was using 4MB of memory or so.) You are no longer
limited by the address space at least in near future with 64-bit Windows, and adding
physical memory really improves your application’s performance much directly.

Once the address space barrier is broken, the real limitation is actually from the physical
memory and the circuitry supporting physical memory. First of all, high density DDR or
DDR2 SDRAM is still very expensive, and not many can afford tens of GBs of memory
right now. Second, the motherboard/chipset often puts limitations on physical memory
capacity. It is not surprising that you can see entry-level x64 PCs that only support a
maximum of 4GB physical memory. I do not recommend these 64-bit systems, because
its memory extensibility is crippled. If you are looking for 64-bit systems, check at least

 18

the maximal supported memory size, make sure you are comfortable with it, no matter it
is 8GB, 16GB, or more.

4. Conclusion
Due to address space limitations, applications on x86 32-bit Windows cannot access
more than 2GB memory (3GB if /3GB boot option is enabled), unless it uses some dirty
paging techniques to bring in the larger virtual or physical memory into the limited
virtual address space. Portable applications using the CRT heap to obtain memory are
specifically confined by the 2GB/3GB address space barrier. Since other objects such as
DLLs may also take the virtual address blocks and fragment the virtual address space, the
actual memory that an application can get is smaller, so is the largest contiguous memory
chunk. Adding physical memory to the system, and enabling PAE if needed, can increase
the physical memory available to the operations system, but that only increases the
chance that a single application gets physical memory instead of virtual memory backed
on disk paging files.

When an application needs more than 2GB/3GB memory, moving to x64 systems is the
obvious choice. The virtual address space limit is completely lifted, and the problem
mostly boils down to find a system in which the both the hardware and the operating
system support big enough physical memory.

References:
[1] Microsoft Developer Network (MSDN): http://msdn.microsoft.com
[2] Microsoft Knowledge Base: http://support.microsoft.com/search/?adv=1
[3] The Old New Things: http://blogs.msdn.com/oldnewthing/
[4] The Wikipedia: http://www.wikipedia.org/

 19

Appendix: The Free Virtual Address Block Walker
// Binglong Xie, 2007.
// link with /LARGEADDRESSAWARE option to make sure
// this application tests regions above 2GB.

#include <windows.h>
#include <stdio.h>
#include <assert.h>

const unsigned long KB = 1024UL;
const unsigned long MB = KB * KB;
const unsigned long GB = MB * KB;
void WalkFreeRegions(DWORD start_address, DWORD length);

int main(int, char* [])
{
 WalkFreeRegions(0UL, (DWORD)(-1));
 return 0;
}

void WalkFreeRegions(DWORD start_address, DWORD length)
{
 if(length==0)
 return;
 const unsigned long VM_granularity = 4*KB;
 DWORD addr0 = start_address/VM_granularity*VM_granularity;
 DWORD addr1 = start_address + length;
 if(addr1<addr0) // overflow. Use max address
 addr1 = (DWORD)(-1);
 addr1 = addr1/VM_granularity*VM_granularity;
 printf("Finding free virtual address regions in [0x%8.8lX, 0x%8.8lX]"
 "\nLength=0x%8.8lX (%ld KB)\n",
 addr0, addr1, addr1-addr0, (addr1-addr0)/KB);
 MEMORY_BASIC_INFORMATION mbi;
 bool no_info = false;
 while(addr0<=addr1) {
 DWORD addr = addr0;
 DWORD bytes = VirtualQuery((BYTE*)addr, &mbi, sizeof(mbi));
 if(bytes==0) { // no info available.
 if(!no_info)
 {
 printf(" NONE: 0x%8.8lX VirtualQuery() has no info START\n", addr);
 no_info = true;
 }
 addr += VM_granularity;
 }
 else {
 if(no_info) { // recovered from no_info
 printf(" NONE: 0x%8.8lX VirtualQuery() has no info END\n", addr);
 no_info = false;
 }
 if(mbi.State==MEM_FREE) { // free region.
 printf(" FREE: 0x%8.8lX, +0x%8.8lx, end 0x%8.8lX (total %ld KB) \n",
 addr, mbi.RegionSize, addr+mbi.RegionSize, mbi.RegionSize/KB);
 }
 else { // non-free region
 }
 addr += mbi.RegionSize;
 }
 if(addr<addr0) // overflow
 break;
 addr0 = addr;
 }
 if(no_info) {
 printf(" NONE: 0x%8.8lX VirtualQuery() has no info END\n", addr0);
 no_info = false;
 }
}

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

