
Introduction to Cuda

By Alan T. Andrea
AT. Andrea Technologies

This paper can be found at: 
http://208.111.39.113/cuda/Introduction to Cuda.pptx



What is CUDA and what is its purpose
• CUDA stands for:    Compute Unified Device Architecture

It was developed by NVIDIA corporation and is a framework for allowing developers to build code in  C/C++ to run on 
NVIDA’s CUDA enabled GPU devices.  This allows you to essentially run code on a massively parallel gpu environment 
providing that you do some clever work to figure out how to partition your problem into a structure that can be distributed on 
a parallel environment.

• The advantage of doing GPGPU ( General purpose computing on a GPU ) 
is that you have access to a device that can run many concurrent threads ( processes )
In parallel.  Many more than would be allowed in a multi-threaded CPU environment.

Many NVIDIA cards ( e.g.:  GeForce, Quadro, Tesla  ) support cuda and SDK tool-kits are available for Mac, Windows, and Many NVIDIA cards ( e.g.:  GeForce, Quadro, Tesla  ) support cuda and SDK tool-kits are available for Mac, Windows, and 
Linux. Therefore, the solution is widely available.

There are also wrappers available to facilitate access to the CUDA framework for non-C/C++ programmers. Wrappers  are, for
example, available for: 

• Java, 
• .NET,  
• Perl, 
• Python, 
• Ruby, 
• MatLab, 
• Mathematica etc.

Therefore, you have options if you don’t want to utilize C.



What types of Applications are there?

• Physical simulations  ( eg particle simulations )
example: http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/particles/doc/particles.pdf



• Medical imaging for CT, Ultrasound
• Gpus are good at implementing FFT in parallel allowing for very complicated 



Other Uses of Cuda:

• Linear Algebra ( CUBLAS )
• Matrix operations 
• Monte Carlo Pricing
• Accelerated Encryption / Decryption• Accelerated Encryption / Decryption
• Fourier Analysis   FFTs
• Sorting
• Graphics Operations



Limitation of Cuda

• Bottleneck of copying data between cpu and gpu  in terms of bandwidth.
(operations run very fast on gpu and sometimes a latency of things are processed 

more quickly than you can provide the gpu with data with which to work on.)

• Cuda enabled gpus only available from Nvidia.

• You can only de-reference GPU pointers in your cuda kernel and you CANNOT de-
reference CPU pointers or get at any cpu memory location !!

• ** for GPUs supporting CUDA compute capability 1.3 and above, there are 
deviations from the IEEE 754 standard for rounding that one most consider in the 
results that are computed to assure they are getting accurate results.

• All threads execute the same program – its not like you can have some threads 
performing one task and others doing something totally different.

• Threads in a block can share memory and communicate with each other but 
threads in one block CANNOT communicate with threads in another block.

• GPU code is c code but no static variables, no recursion, no variable arguments.



Ieee 754  are standards for floating point operations and rounding etc. It is important 
to know how the gpu compares and handles ieee 754 for calculation intensive apps.





Scallable model



Compute Capabilities

• See this website for compute capabilities of your device:
http://www.nvidia.com/object/cuda_gpus.html

e.g. : GeForce 9400GT compute capablity is: 1.0 number of multi-processors 
is 2 and number of cuda cores is: 16





GPU Architecture



Getting Cuda on your Env

• To get the Cuda SDK,  go to:
• http://developer.nvidia.com/object/cuda_3_2_downloads.html
• Download and install.

On Unix/Mac, you should have a directory structure as follows:

• /usr/local/cuda
• drwxr-xr-x  26 root  wheel   884 Mar 27 11:19 doc
• drwxr-xr-x  43 root  wheel  1462 Mar 27 11:19 include
• drwxr-xr-x   9 root  wheel   306 Mar 27 11:19 lib
• drwxr-xr-x  10 root  wheel   340 Mar 27 11:19 src
• drwxr-xr-x  11 root  wheel   374 Mar 27 11:19 bin
• drwxr-xr-x   6 root  wheel   204 Mar 27 11:19 computeprof
• drwxr-xr-x   4 root  wheel   136 Oct 19 22:23 open64



Installing on your Environment cont

• In the bin dir, you should see these files including the nvidia c compiler:  nvcc:

-rwxr-xr-x  1 root  wheel    22132 Oct 19 22:23 cuda-memcheck
-rwxr-xr-x  1 root  wheel  8295184 Oct 19 22:23 fatbin
-rw-r--r-- 1 root  wheel      271 Oct 19 22:23 nvcc.profile
-rwxr-xr-x  1 root  wheel    88352 Oct 19 22:23 bin2c
-rwxr-xr-x  1 root  wheel  2888820 Oct 19 22:23 cudafe-rwxr-xr-x  1 root  wheel  2888820 Oct 19 22:23 cudafe
-rwxr-xr-x  1 root  wheel  2617072 Oct 19 22:23 cudafe++
-rwxr-xr-x  1 root  wheel    84100 Oct 19 22:23 filehash
-rwxr-xr-x  1 root  wheel  8331904 Oct 19 22:23 nvcc
-rwxr-xr-x  1 root  wheel  8576388 Oct 19 22:23 ptxas

$ ./nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2010 NVIDIA Corporation
Built on Tue_Oct_19_17:52:08_PDT_2010
Cuda compilation tools, release 3.2, V0.2.1221



Compiling a sample program

• Firstly, I create a script to set my local environment

export DYLD_LIBRARY_PATH=/usr/local/cuda/lib:$DYLD_LIBRARY_PATH
export PATH=$PATH:/usr/local/cuda/bin

This will ensure that the required libraries are in the library path
And that the cuda/bin dir is in your PATH so that you can get to the nvcc

compiler program.

That’s IT, now lets compile and run some samples !!



Compiling your first program

• nvcc vector_addition.cu -o vector_add

• vector_addition.cu is the name of your cuda 
programprogram

• -o is the output file name that is the 
executable file that is produced.



Analysis of a Cuda Program

• There are two essential parts of a cuda c 
program:

1. The CPU part – contains normal c program functions

2. The GPU part – contains your device Kernel
IE the part that runs on the GPU device.



Device Function
__global__ void vector_add(const float *a,

const float *b,
float *c,
const size_t n)

{
// compute the global element index this thread should process
unsigned int i = threadIdx.x + blockDim.x * blockIdx.x;

// avoid accessing out of bounds elements

if(i < n)
{
// sum elements
c[i] = a[i] + b[i];

}
}



See some interesting things?

unsigned int i = threadIdx.x + blockDim.x * blockIdx.x;

// avoid accessing out of bounds elements
if(i < n)
{

. ..   <<your code here >>
}

Remember that we are partitioning our code to run on a gpu device

That has many blocks and threads within each block.  The above assignment of integer I assures 
that we have a unique index amonst all the blocks/threads that have been allocated to our 
program.

threadIdx — index of current thread; the thread index is between 0 and blockDim - 1
blockIdx — the index of current block; the block index is between 0 and gridDim - 1
blockDim — the block size dimensions



int main(void)
{
// create arrays of 5K elements
const int num_elements = 5000;

// compute the size of the arrays in bytes
const int num_bytes = num_elements * sizeof(float);

// points to host & device arrays
float *device_array_a = 0;
float *device_array_b = 0;
float *device_array_c = 0;
float *host_array_a = 0;
float *host_array_b = 0;
float *host_array_c = 0;

// malloc the host arrays
host_array_a = (float*)malloc(num_bytes);
host_array_b = (float*)malloc(num_bytes);
host_array_c = (float*)malloc(num_bytes);

// cudaMalloc the device arrays
cudaMalloc((void**)&device_array_a, num_bytes);
cudaMalloc((void**)&device_array_b, num_bytes);
cudaMalloc((void**)&device_array_c, num_bytes);

// if any memory allocation failed, report an error message// if any memory allocation failed, report an error message
if(host_array_a == 0 || host_array_b == 0 || host_array_c == 0 ||

device_array_a == 0 || device_array_b == 0 || device_array_c == 0)
{
printf("couldn't allocate memory\n");
return 1;

}

// initialize host_array_a & host_array_b
for(int i = 0; i < num_elements; ++i)
{
// make array a a linear ramp
host_array_a[i] = (float)i;

// make array b random
host_array_b[i] = (float)rand() / RAND_MAX;

}

// copy arrays a & b to the device memory space
cudaMemcpy(device_array_a, host_array_a, num_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(device_array_b, host_array_b, num_bytes, cudaMemcpyHostToDevice);



// compute c = a + b on the device
const size_t threads_per_block = 256;
size_t block_size = num_elements / block_size;

// launch the kernel
//    IMPORTANT NOTE – THE CALL TO THE KERNEL IS   ASYNCHRONOUS – I.E. AFTER THIS CALL IS DONE, CONTROL 

RETURNS IMMEDIATELY TO THE CPU
vector_add<<<block_size, threads_per_block>>>(device_array_a, device_array_b, device_array_c, num_elements);

// copy the result back to the host memory space
cudaMemcpy(host_array_c, device_array_c, num_bytes, cudaMemcpyDeviceToHost);

// IMPORTANT NOTE:  cudaMemcpy is  SYNCHRONOUS,  copy start ONLY after all prevous cuda kernal calls are 
complete.   

// print out the first 10 results
for(int i = 0; i < 10; ++i)for(int i = 0; i < 10; ++i)
{

printf("result %d: %1.1f + %7.1f = %7.1f\n", i, host_array_a[i], host_array_b[i], host_array_c[i]);
}

// deallocate memory
free(host_array_a);
free(host_array_b);
free(host_array_c);

cudaFree(device_array_a);
cudaFree(device_array_b);
cudaFree(device_array_c);

}



Elements in Detail

• First, we need to allocate memory on the GPU 
Device via not a cpu Malloc but a GPU Malloc:

• cudaMalloc((void**)&device_array_a, num_bytes);

• This will allocate  num_bytes number of bytes of type float

• Next, we need to copy data to the GPU and again there is a cuda function 
that facilitates this copy:

• cudaMemcpy(device_array_a, host_array_a, num_bytes, cudaMemcpyHostToDevice);



• Next, we need to invoke our GPU function:
// launch the kernel

vector_add<<<block_size,threads_per_block>>>(device_array_a, device_array_b, device_array_c, 
num_elements);

• Vector_add is the name of the gpu device function. It takes four 
parameters which are 3 arrays and the number of elements 

• Block size is the number of blocks to utilize• Block size is the number of blocks to utilize
• Thread Size is the number of threads per block
• Therefore, in our example we set our threads to be 256
• And blocks to be  5,000 / 256  

• 5000/ 256   *  256   =   5,000 elements to process.



Analysis and Demo

• I will now show some live examples on my 
mac using  the command line and nvcc and 
using eclipse for c.  



Mathematica examples

• Lets now look at some examples of calling 
cuda from Mathematica.

• First we need to import the Cuda package to give us the ability to do cuda:
Needs["CUDALink`"]

• If You need to install cuda, issue this command and it will retreive the 
latest version via the internet:

• CUDAResourcesInstall[]



Cuda on Mathematica

• To ensure that your environment is ready to 
go issue this command:

• CUDAQ[]   - this will return True if cuda is enabled and ready or false • CUDAQ[]   - this will return True if cuda is enabled and ready or false 
otherwise.

• To see the compute capability that your card has, issue this command:

TabView[Table[ CUDAInformation[ii, "Name"] ->    CUDAInformation[ii,     "Compute Capabilities"], {ii, $CUDADeviceCount}]]



Ok, lets build a device function to and invoke it from 
Mathematica

– First lets define a couple of  data sets 
in Mathematica to hold some numbers:

ds1={1,3,5,7,9}ds1={1,3,5,7,9}
ds2={2,4,6,8,10}
Lets add these lists together using cuda and get the 

result list back from the gpu 



• So, lets define our kernel function:
code = "  __global__ void vectAdd (int * list1,   int *list2,   int * out, int length) 
{ 

int index = threadIdx.x + blockIdx.x*blockDim.x;  

if (index < length)  out[index] = list1[index] + list2[index];  

}";}";

Now, lets define a wrapper to that function in Mathematica and load the function:

cudaFun = CUDAFunctionLoad[code, "vectAdd", { {_Integer, _, "Input"}, {_Integer, _, "Input"},  {_Integer, _, "Output"}, _Integer}, 5 ]

Define a variable to hold the size of our list in mathematica:

listSize = 10;



• Now we can run our newly defined cuda 
function and get results back

• res = cudaFun[ ds1, ds2, ds3, listSize];

• Take[First@res,5]



Other usefull built in Mathematica 
Cuda things:

• Multiply two random integer matrices:
• CUDADot[RandomInteger[1, {5, 5}], RandomInteger[1, {5, 5}]];  MatrixForm[%]

• Sort an List of Integers:
• CUDASort[Reverse@Range[100]]



• Image Processing
• The CUDALink Image Processing module can be classified into three categories. 

The first is convolution, which is optimized for CUDA. The second is morphology, 
which contains abilities such as erosion, dilation, opening, and closing. Finally, 
there are the binary operators. These are the image multiplication, division, 
subtraction, and addition operators. All operations work on either images or lists.

• CUDAImageConvolve convolve the kernel with the specified kernel.
• CUDABoxFilter convolve the kernel with the BoxMatrix kernel 
• CUDAErosion perform   morphological erosion 
• CUDADilation perform morphological dilation 
• CUDAOpening perform morphological opening • CUDAOpening perform morphological opening 
• CUDAClosing perform morphological closing 
• CUDAClamp clamp the values between a range 
• CUDAColorNegate invert the values of input 
• CUDAImageAdd add two inputs 
• CUDAImageSubtract subtract two inputs 
• CUDAImageMultiply multiply two inputs 
• CUDAImageDivide divide two inputs



• Linear Algebra and Fourier Transforms
• CUDADot give product of vectors and matrices 
• CUDATranspose tranpose input matrix 
• CUDAArgMaxList give the index with maximum absolute element 
• CUDAArgMinList give the index with minimum absolute element 
• CUDAFourier find the Fourier transform 
• CUDAInverseFourier find the inverse Fourier transform



Summary
• Cuda is ubiquitous – if you have an nvidia graphics card in your computer, you 

probably have the ability to do cuda. It is good at computations that can be 
expressed as data parralel computations. IE the same program executed on 
many elements in parralel.

• Cuda allows massively parralel apps for the masses.

• Even if you don’t know C, there are wrappers for Cuda available in many other 
programming languages and in high level tools like Mathematica so it is a very 
open technology.

• But…
• Always verify calculations to make sure you get the correct results and precision that you are 

looking for.
• Always know the limitations and bottlenecks like the time it takes to copy memory from cpu to gpu.  

All depending upon what you are doing, that can be a show stopper right there.


