Introduction to Cuda

By Alan T. Andrea
AT. Andrea Technologies

This paper can be found at:
http://208.111.39.113/cuda/Introduction to Cuda.pptx

What is CUDA and what is its purpose

CUDA stands for: Compute Unified Device Architecture

It was developed by NVIDIA corporation and is a framework for allowing developers to build code in C/C++ to run on
NVIDA’s CUDA enabled GPU devices. This allows you to essentially run code on a massively parallel gpu environment
providing that you do some clever work to figure out how to partition your problem into a structure that can be distributed on
a parallel environment.

The advantage of doing GPGPU (General purpose computing on a GPU)
is that you have access to a device that can run many concurrent threads (processes)
In parallel. Many more than would be allowed in a multi-threaded CPU environment.

Many NVIDIA cards (e.g.: GeForce, Quadro, Tesla) support cuda and SDK tool-kits are available for Mac, Windows, and
Linux. Therefore, the solution is widely available.

There are also wrappers available to facilitate access to the CUDA framework for non-C/C++ programmers. Wrappers are, for
example, available for:

Java,

NET,

Perl,

Python,

Ruby,

MatLab,
Mathematica etc.

Therefore, you have options if you don’t want to utilize C.

What types of Applications are there?

* Physical simulations (eg particle simulations)

[]
exa l I I p I e e http://developer.download.nvidia.com/compute/cuda/sdk/website/C/src/particles/doc/particles.pdf

EEX

* Medical imaging for CT, Ultrasound

* Gpus are good at implementing FFT in parallel allowing for very complicated

@ CUDA for Medical - Mozilla Firefox
File Edit Miew History Bookmarks Tools Help

- 72t (@ hirp://www.nvidia com/object/cuda_medicalhtmi

Lotest Headlines | Rhino 4.0 SDK | (£) Asterisk Cansole illl VPS Land Control Panel || Windows Server Contr.

Asteriol NET dowhion... [l ATAT=ch GRM) |ul) SDR |uls Gne Bevaloprment |l wiprsieet Lol £f Bl lcccastiong Siiverlight Deselopment. |l TS

ted @ Getting Storted
£ ¥our Stati

GURU ANALYSIS

~ WO Erier o b0 Ftocks B rever |

% | W CUDA - Wikipedia, the free ency... > | &) CUDA Zone

&) CUDA for Medical

B Man and Machines | SPIKE

| || HamFair2010Report x § Frequency Allacations 2 5 FEMA: Determine your Risk
DOWNLOAD DRIVE COMMUNITIES UPPORT
CUDA ZONE WHAT'S NEW WHAT IS CUDA? CUDA GPUs DEVELOPERS
101A chnotogies > CUDA Zane = CUDA N A cuoa
CUDASRACTION CUDA for Medical F
CUDA for Research
CUDA for Video and Photos
CUDA for Energy
CUDA for Finance % . SN
Company Develops
Innovative Way ta Quickly Deliver Highly-
Detaile
The ability to quickly produce highly-detailed images in a short timeframe is
particularly relevant in the field of breast cancer scanning. Techniscan, a
developer of automated ultrasound imaging systems, ported its proprietary
algorithm from a traditional CPU-based system to CUDA and NVIDIA Tesla GPUs.
The CUDA-based system is able to process Techniscan’s algorithm twice as fast.
Once this investigational device receives FDA clearance, patients will be able to
have their results within a single visit.
For more information, please visit w cam.
tew from the Techniscan WE
Click to see the CUDA Community Showcase.
Click | to see more examples of CUDA in action.
Click to see world map of educational institutions where CUDA and GPU Computing are taught.
click to see a list of GPU computing clusters built with CUDA-based Tesla systems.
Click to see a list of organizations offering consulting and training services.
> Find: particle & MNet # Previous &7 Highlight all
Done
= ge— =

Other Uses of Cuda:

Linear Algebra (CUBLAS)

Matrix operations

Monte Carlo Pricing

Accelerated Encryption / Decryption
Fourier Analysis FFTs

Sorting

Graphics Operations

Limitation of Cuda

* Bottleneck of copying data between cpu and gpu in terms of bandwidth.

(operations run very fast on gpu and sometimes a latency of things are processed
more quickly than you can provide the gpu with data with which to work on.)

* Cuda enabled gpus only available from Nvidia.

* You can only de-reference GPU pointers in your cuda kernel and you CANNOT de-
reference CPU pointers or get at any cpu memory location !!

 **for GPUs supporting CUDA compute capability 1.3 and above, there are
deviations from the IEEE 754 standard for rounding that one most consider in the
results that are computed to assure they are getting accurate results.

* All threads execute the same program — its not like you can have some threads
performing one task and others doing something totally different.

* Threads in a block can share memory and communicate with each other but
threads in one block CANNOT communicate with threads in another block.

* GPU code is c code but no static variables, no recursion, no variable arguments.

Double Precision Floating Point

NVIDIA GPU

SSE2

<3

NVIDIA
Cell SPE

Precision

IEEE 754

IEEE 754

IEEE 754

Rounding modes for FADD and
FMUL

All 4 IEEE, round to nearest, zero,
inf, -inf

All 4 IEEE, round to nearest,
zero, inf, -inf

Round to zero/truncate
only

Denormal handling

Full speed

Supported, costs 1000’s of
cycles

Flush to zero

NaN support

Yes

Yes

Overflow and Infinity support

Yes

Yes

No infinity,
clamps to max norm

Flags

Yes

Some

FMA

Yes

Yes

Square root

Software with low-latency FMA-
based convergence

Hardware

Software only

Division

Software with low-latency FMA-
based convergence

Hardware

Software only

Reciprocal estimate accuracy

24 bit

12 bit

12 bit

Reciprocal sqrt estimate accuracy

log2(x) and 2*x estimates

accuracy
© NVIDIA Corporation 2008

x Find: nvidia # Nt f Previous & Highlight gll [Match case

leee 754 are standards for floating point operations and rounding etc. It is important
to know how the gpu compares and handles ieee 754 for calculation intensive apps.

Scallable model

Multithreaded CUDA Program

I

!

Core 0

'GPU with 4 Cores |

Core 0

Core 2

Core 3

=

ok Bleck?

Compute Capabilities

* See this website for compute capabilities of your device:
http://www.nvidia.com/object/cuda gpus.html

e.g. : GeForce 9400GT compute capablity is: 1.0 number of multi-processors
is 2 and number of cuda cores is: 16

Compute capability (version)
Technical specifications

1.0 114 1.2 1.3 2%
Maximum x- or y- dimensions of a grid of thread blocks 65535
Maximum number of threads per block 512 1024
Maximum x- or y- dimension of a block 512 1024
Maximum z- dimension of a block 54
Warp size 32
Maximum number of resident blocks per multiprocessor]
Maximum number of resident warps per multiprocessor 24 32 48
Maximum number of resident threads per multiprocessor 762 1024 1536
Humber of 32-bit registers per multiprocessor 8K 16 K 32 K
Maximum amount of shared memory per multiprocessor 16 KB 48 KB
Humber of shared memory banks 16 32
Amount of local memory per thread 16 KB 512 KB
Constant memory size 54 KB
Cache working set per multiprocessor for constant memory 8 KB

Cache working set per multiprocessor for texture memory Dewvice dependent, between & KB and & KB

Maximum width for 1D texture
8192 32768
reference bound to a CUDA array

Maximum width for 1D texture
reference bound to linear memory

Maximum width and height for 2D
texture reference bound to 65536 x 32768 65536 x 65535

limear memory or a CUDA array

Maximum width, height and depth
for a 3D texture reference bound to linear 2048 x 2048 x 2048

memory or a CUDA array

Maximum number of textures that T
can be bound to a kernel

Maximum width for a 10 surface T
reference bound to a CUDA array

Maximum width and height for a 2D Mot

surface reference bound to a CUDA array supported

81592 x 8192

Maximum number of surfaces that
can be bound to a kernel
Maximum number of instructions per

2 million
kernel

GPU Architecture

CUDA Programming Model <A

nvIiDIA

Device

A kernel is executed by a grid,
which contain blocks.

Kernel

These blocks contain our threads.

» A thread block is a batch of
threads that can cooperate:
« Sharing data through shared memory
» Synchronizing their execution [Block A, 1)

Thread | Thread | Thread | Thread
0,0) (1,0) (2,0) (3,0 4,0)

» Threads from different blocks
- Thread | Thread | Thread | Thread | Thread
operate independently ov | av | en | av | ap

Thread Thread Thread Thread Thread
(0,2) 1,2) 2,2) 3,2) 4,2)

x Find: nvidia ¥ Net # Previous & Highlight all Match case

Getting Cuda on your Env

* To get the Cuda SDK, go to:

 http://developer.nvidia.com/object/cuda 3 2 downloads.html

e Download and install.

On Unix/Mac, you should have a directory structure as follows:

e Jusr/local/cuda

e drwxr-xr-x 26 root wheel 884 Mar 27 11:19 doc

e drwxr-xr-x 43 root wheel 1462 Mar 27 11:19 include

* drwxr-xr-x 9root wheel 306 Mar 27 11:19 lib

e drwxr-xr-x 10 root wheel 340 Mar 27 11:19 src

e drwxr-xr-x 11root wheel 374 Mar 27 11:19 bin

* drwxr-xr-x 6 root wheel 204 Mar 27 11:19 computeprof
* drwxr-xr-x 4 root wheel 136 Oct 19 22:23 open64

Installing on your Environment cont

* Inthe bin dir, you should see these files including the nvidia ¢ compiler: nvcc:

-rwxr-xr-x 1 root wheel 22132 Oct 19 22:23 cuda-memcheck
-rwxr-xr-x 1 root wheel 8295184 Oct 19 22:23 fatbin
-rw-r--r-- 1 root wheel 271 Oct 19 22:23 nvcc.profile
-rwxr-xr-x 1 root wheel 88352 Oct 19 22:23 bin2c

-rwxr-xr-x 1 root wheel 2888820 Oct 19 22:23 cudafe
-rwxr-xr-x 1 root wheel 2617072 Oct 19 22:23 cudafe++
-rwxr-xr-x 1 root wheel 84100 Oct 19 22:23 filehash
-rwxr-xr-x 1 root wheel 8331904 Oct 19 22:23 nvcc

-rwxr-xr-x 1 root wheel 8576388 Oct 19 22:23 ptxas

S ./nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2010 NVIDIA Corporation
Built on Tue_Oct_19 17:52:08 PDT 2010
Cuda compilation tools, release 3.2, V0.2.1221

Compiling a sample program

* Firstly, | create a script to set my local environment

export DYLD LIBRARY_PATH=/usr/local/cuda/lib:SDYLD_LIBRARY_PATH
export PATH=SPATH:/usr/local/cuda/bin

This will ensure that the required libraries are in the library path

And that the cuda/bin dir is in your PATH so that you can get to the nvcc
compiler program.

That’s IT, now lets compile and run some samples !!

Compiling your first program

* nvcc vector_addition.cu -o vector_add

e vector _addition.cu is the name of your cuda
program

* -0is the output file name that is the
executable file that is produced.

Analysis of a Cuda Program

 There are two essential parts of a cuda c
program:

1. The CPU part — contains normal c program functions

2. The GPU part — contains your device Kernel
IE the part that runs on the GPU device.

Device Function

__global__ void vector_add(const float *a,
const float *b,
float *c,
const size_tn)

// compute the global element index this thread should process
unsigned int i = threadldx.x + blockDim.x * blockldx.x;

// avoid accessing out of bounds elements

if(i < n)
{

// sum elements
cli] = a[i] + b[i];
}
}

See some interesting things?

unsigned int i = threadldx.x + blockDim.x * blockldx.x;

// avoid accessing out of bounds elements
if(i < n)
{

. <<your code here >>

}

Remember that we are partitioning our code to run on a gpu device

That has many blocks and threads within each block. The above assignment of integer | assures
that we have a unique index amonst all the blocks/threads that have been allocated to our
program.

threadldx — index of current thread; the thread index is between 0 and blockDim - 1
blockldx — the index of current block; the block index is between 0 and gridDim - 1
blockDim — the block size dimensions

int main(void)

{

// create arrays of 5K elements
const int num_elements = 5000;

// compute the size of the arrays in bytes
const int num_bytes = num_elements * sizeof(float);

// points to host & device arrays
float *device_array_a =0;

float *device_array_b =0;

float *device_array_c=0;

float *host_array_a =0;

float *host_array_b =0;

float *host_array ¢ =0;

// malloc the host arrays

host_array_a = (float*)malloc(num_bytes);
host_array_b = (float*)malloc(num_bytes);
host_array_c = (float*)malloc(num_bytes);

// cudaMalloc the device arrays

cudaMalloc((void**)&device_array_a, num_bytes);
cudaMalloc((void**)&device_array_b, num_bytes);
cudaMalloc((void**)&device_array_c, num_bytes);

// if any memory allocation failed, report an error message
if(host_array_a==0 || host_array_b ==0 || host_array c==0 ||

device_array_a ==0 | | device_array_b ==0 | | device_array_c ==0)
{

printf("couldn't allocate memory\n");

return 1;

}

// initialize host_array_a & host_array_b
for(int i = 0; i < num_elements; ++i)
{
// make array a a linear ramp
host_array_a[i] = (float)i;

// make array b random
host_array_b[i] = (float)rand() / RAND_MAX;
1

// copy arrays a & b to the device memory space
cudaMemcpy(device_array_a, host_array_a, num_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(device_array_b, host_array_b, num_bytes, cudaMemcpyHostToDevice);

// compute c = a + b on the device
const size_t threads_per_block = 256;
size_t block_size = num_elements / block_size;

// launch the kernel

// IMPORTANT NOTE — THE CALL TO THE KERNEL IS ASYNCHRONOUS — I.E. AFTER THIS CALL IS DONE, CONTROL
RETURNS IMMEDIATELY TO THE CPU

vector_add<<<block_size, threads_per_block>>>(device_array_a, device_array_b, device_array_c, num_elements);

// copy the result back to the host memory space
cudaMemcpy(host_array_c, device_array_c, num_bytes, cudaMemcpyDeviceToHost);

// IMPORTANT NOTE: cudaMemcpy is SYNCHRONOUS, copy start ONLY after all prevous cuda kernal calls are
complete.

// print out the first 10 results
for(inti=0;i< 10; ++i)
{
printf("result %d: %1.1f + %7.1f = %7.1f\n", i, host_array_ali], host_array_bl[i], host_array_c[i]);
}

// deallocate memory
free(host_array_a);
free(host_array_b);
free(host_array_c);

cudaFree(device_array_a);
cudaFree(device_array_b);
cudaFree(device_array_c);

Elements in Detail

* First, we need to allocate memory on the GPU
Device via not a cpu Malloc but a GPU Malloc:

® cudaMalloc((void**)&device_array_a, num_bytes);

* This will allocate num_bytes number of bytes of type float

* Next, we need to copy data to the GPU and again there is a cuda function
that facilitates this copy:

* cudaMemcpy(device_array_a, host_array_a, num_bytes, cudaMemcpyHostToDevice);

 Next, we need to invoke our GPU function:

// launch the kernel

vector_add<<<block_size,threads_per_block>>>(device_array _a, device_array b, device_array c,
num_elements);

 Vector_add is the name of the gpu device function. It takes four
parameters which are 3 arrays and the number of elements

* Block size is the number of blocks to utilize

* Thread Size is the number of threads per block
 Therefore, in our example we set our threads to be 256
 And blocks to be 5,000/ 256

 5000/256 * 256 = 5,000 elements to process.

Analysis and Demo

* | will now show some live examples on my
mac using the command line and nvcc and
using eclipse for c.

Mathematica examples

Lets now look at some examples of calling
cuda from Mathematica.

First we need to import the Cuda package to give us the ability to do cuda:
Needs["CUDALink™"]

If You need to install cuda, issue this command and it will retreive the
latest version via the internet:

CUDAResourcesInstall[]

Cuda on Mathematica

* To ensure that your environment is ready to
go issue this command:

« CUDAQ]] - this will return True if cuda is enabled and ready or false
otherwise.

* To see the compute capability that your card has, issue this command:

TabView[Table[CUDAInformationl[ii, "Name"] -> CUDAInformation[ii, "Compute Capabilities"], {ii, SCUDADeviceCount}]]

Ok, lets build a device function to and invoke it from
Mathematica

— First lets define a couple of data sets
in Mathematica to hold some numbers:

ds1={1,3,5,7,9}
ds2={2,4,6,8,10}

Lets add these lists together using cuda and get the
result list back from the gpu

* So, lets define our kernel function:
code =" _ global _void vectAdd (int * listl, int *list2, int* out, intlength)
{

int index = threadldx.x + blockldx.x*blockDim.x;
if (index < length) out[index] = list1[index] + list2[index];
1
Now, lets define a wrapper to that function in Mathematica and load the function:

cudaFun = CUDAFunctionLoad[code, "vectAdd", { {_Integer, _, "Input"}, {_Integer, _, "Input"}, {_Integer, , "Output"}, Integer}, 5]

Define a variable to hold the size of our list in mathematica:

listSize = 10;

* Now we can run our newly defined cuda
function and get results back

* res = cudaFun[ds1, ds2, ds3, listSize];

 Take[First@res,5]

Other usefull built in Mathematica
Cuda things:

Multiply two random integer matrices:
CUDADot[Randomlinteger[1, {5, 5}], RandomInteger[1, {5, 5}]]; MatrixForm[%]

Sort an List of Integers:
CUDASort[Reverse@Range[100]]

Image Processing

The CUDALink Image Processing module can be classified into three categories.
The first is convolution, which is optimized for CUDA. The second is morphology,
which contains abilities such as erosion, dilation, opening, and closing. Finally,
there are the binary operators. These are the image multiplication, division,
subtraction, and addition operators. All operations work on either images or lists.

CUDAImageConvolve convolve the kernel with the specified kernel.

CUDABoxFilter convolve the kernel with the BoxMatrix kernel

CUDAErosion perform morphological erosion

CUDADilation perform morphological dilation

CUDAOpening perform morphological opening

CUDAClosing perform morphological closing

CUDAClamp clamp the values between a range

CUDAColorNegate invert the values of input
CUDAImageAdd add two inputs
CUDAImageSubtract subtract two inputs

CUDAImageMultiply multiply two inputs

CUDAImageDivide divide two inputs

Linear Algebra and Fourier Transforms

CUDADot give product of vectors and matrices

CUDATranspose tranpose input matrix

CUDAArgMaxList give the index with maximum absolute element
CUDAArgMinList give the index with minimum absolute element
CUDAFourier find the Fourier transform

CUDAInverseFourier find the inverse Fourier transform

Summary

Cuda is ubiquitous — if you have an nvidia graphics card in your computer, you
probably have the ability to do cuda. It is good at computations that can be
expressed as data parralel computations. |E the same program executed on
many elements in parralel.

Cuda allows massively parralel apps for the masses.

Even if you don’t know C, there are wrappers for Cuda available in many other
programming languages and in high level tools like Mathematica so it is a very
open technology.

But...

Always verify calculations to make sure you get the correct results and precision that you are
looking for.

Always know the limitations and bottlenecks like the time it takes to copy memory from cpu to gpu.
All depending upon what you are doing, that can be a show stopper right there.

