
Agile Methods: Fact or Fiction

Matt Ganis
International Business Machines

17 Skyline Drive, Hawthorne, NY 10532
ganis@us.ibm.com

Abstract

Modern businesses and software developers are continually looking for better, more cost-
effective ways to develop software. Compared to 40 years ago we have much
cheaper/faster computers, more powerful programming languages, better education, and
better understanding of the theory of software development. We also have a number of
different software processes/methodologies that are believed to be the “best” way to
develop software. This paper will explore the Agile software movement and attempt to
demonstrate how it can address the need for a flexible mode of developing software
allowing teams to create higher quality code while meeting the exceeding demands of our
customers.

1.1 History of Software Engineering

The term “software engineering” can be trace it’s origin back to a set of historical
conferences hosted by NATO in the late 1960’s. In the fall of 1968 and again the in fall
of 1969, NATO hosted a conference devoted solely to the subject of software
engineering[1]. At the time, the term “software engineering” was not in general use, nor
widely accepted. To quote directly from the introduction to the proceedings of the first
conference:

“The phrase ‘software engineering’ was deliberately
chosen as being provocative, in implying
the need for software manufacture to be based
on the types of theoretical foundations and practical
disciplines that are traditional in the established branches of
engineering”[1].

For the purposes of this conference, the general attitude was not that software
development was actually engineering, but rather, the prevailing assumption was that it
would be beneficial to consider software development as engineering. As a result, these
conferences played a major role in gaining general acceptance for the term and as a result
having a profound affect on how programmers produced code. The motivation for these

conferences was that the computer industry at large was having a great deal of trouble in
producing large and complex software systems and there was a general feeling of a
“software crisis” within the industry.

The essence of this software crisis was that the errors in software systems and the cost of
writing that software tended to grow geometrically with the size of a software system[2].
One of the most notorious and well-documented example of the software crisis was
experienced by IBM in developing the system software for its third-generation
System/360 computers, which was estimated to have a cost of $500 million dollars, and
involved over 5,000 person years in its making with a peak development staff of one
thousand employees [3].

This notion of engineering software had some serious ramifications on the way in which
it was created. Because these programmers had their roots in an engineering discipline,
an extreme amount of care was taken when crafting code. Programmers in the late
1950’s and into the 1960’s were drawn mainly from the engineering field, so it should not
be surprising to see that they engineered software like they engineered hardware or a
mechanical objects. Programmers practiced hardware concepts as “measure twice, cut
once,” before running their code on the computer. In a physical engineering discipline
this makes sense, since once the raw material is cut or fabricated, an error in
measurement meant restarting with new material. As an analogy consider that the cost of
computing was rather high [4] so rather than wasting precious computing time,
programmers adapted the “measure twice, cut once” rule to programming, where they
would double or triple check code before wasting precious computer time on errors.

Because of this
cautious nature,
methodologies were
developed that
enabled project
teams to slowly and
methodically create
their plans for the
creation of software
systems. This
method, often
referred to as the
“waterfall” method
called for careful,
well thought out
plans and methods,
sacrificing time for

detailed specifications and analysis.

Figure 1. Sample Waterfall Flow for a project

1.2 The Waterfall methodology

In the “waterfall method” (see Figure 1) there is minimal feedback from one phase to
another (for example from “Coding” to “Testing”). There is often only a small set of
artifacts (also called "work products," which can include documents, models, or code)
that is produced in each phase, validated at the end of the phase, and then used as input
for the next phase. These artifacts are considered complete, almost frozen, and revisited
only to fix a major issue. What the waterfall method emphasized predominately was the
freezing of requirement specifications or the high-level design very early in the lifecycle,
prior to engaging in more thorough design and implementation work.

1.3 A Chink in the Armor

By the later part of the 1970’s, however, people were finding out that working with
software differed from working with hardware in significant ways. Software was much
easier to modify than was hardware, and unlike hardware, software didn’t require
expensive production lines to make duplicates. A programmer would change a program
once, and then reload the same code onto another computer, rather than having to
individually change the configuration of each copy of the hardware. This ease of
modification led many people and organizations to adopt a “code and fix” approach to
software development[5], as compared to the exhaustive Critical Design Reviews that
are typical in a waterfall methodology.

1.3.1 Cost of Computing

Other factors that led to the “code and fix” mentality (or “spaghetti coders”) included the
declining year-to-year cost of computing. Contrary to the early days of “desk checking”
code, programmers would opt for the easy way out, and let the computer determine there
was error rather than human logic.

Moore's Law (named after Gordon Moore, a founder of Intel) stated that the processing
power of microchips doubles every 18 months[6]. This “law” has a corollary that states:
as a result of Moore’s law, processor performance will double every 18 months and the
cost of computing will drop by nearly 25 percent per year [4, 7]. In 1987, Fred Brooks
noted that computing devices saw six orders of magnitude in performance price gain over
the previous 30 years [8].

By the end of the 1970’s problems were arising with the formality and sequential nature
of the “waterfall processes”. Formal methods had difficulties with scalability and
usability by the majority of less expert programmer. In 1975 a survey found that the
average coder in 14 large organizations had only two years of college education and two
years of software experience [9]. These same coders were familiar with only two
programming languages and had limited experience with the fledgling technology. The
sequential waterfall model, which was heavily document-intensive, slow-paced, and
expensive to use simply created sloppy code [9].

Since much of this planning documentation preceded coding, it was reported that many
impatient managers would rush their teams into coding with only minimal effort in
requirements and design [9]. In a 1979 survey results indicated that about 50% of the
respondents were not using good software requirements and design practices [5]. This
resulted in the fact that organizations software costs were beginning to exceed the cost of
hardware on which it ran.

In 1972, Barry Boehm predicted that by 1985, more than 80% of the cost of software
would be spent in maintenance [10]. A look at trends of percentage of software
maintenance compared to overall project cost, show that this prediction is just as true
today as it was in 1972 [11].

Year Proportion of
Software Costs

1979 67%

1981 >50%

1984 65-75%

1988 60-70%

1993 75%

2000 >90%

Table 1. Rising costs of software maintenance [19]

Customer or Stakeholder frustration is also associated with the Waterfall method. Since
requirements are frozen early in the planning cycles, changes to requirements were
difficult if not impossible to inject. Making matters worse, the customer rarely saw
“work in progress”, having to wait until the end of the development or testing phases
before seeing a working product (which may or may not have met their needs).

1.4 Enter Agile Methods

Agile Methodologies have started to gain considerable interest in the IT community
during the last several years [12-14]. In his work “The Coming of a New Organization”
Peter Drucker discussed the need to change the command-and-control organization to an
information-based organization, which is an organization of knowledge specialists [15].
Information-based organizations require clear, simple, common objectives that translate
into particular actions. It also needs concentration on one objective or at most on a few.

Because the members of an information-based organization are specialists, they cannot be
told how to do their work in a very precise, prescribed way. The heavy handed planning
and analysis of the prior methods simply got in the way of making rapid progress. In
hindsight, the Agile movement is directly in-line with Drucker’s “New Organization”.
These methods have been proposed as a way to build quality software systems quicker
than traditional methods would allow, while easily adapting to a rapidly and frequently
changing set of requirements.

Agile development aims to build software faster and more flexibly than traditional
approaches. In the Agile manifesto, published in February of 2001, it clearly states that
Agile enthusiasts value "Working Software over Comprehensive Documentation" [16].
One of the main tenents of Agile development is the continual production of working
software (not complete software, but working versions or prototypes, intended to
generate discussion between the developers and the stakeholders). Agile methods are in
direct conflict with traditional plan-driven methods of software development that believes
that complex software systems can be built in a sequential, phase-wise manner where all
of the requirements are gathered at the beginning, followed by design, and finally coding.
These plan driven methods assume that complex systems can be built in a single pass,
without going back and revisiting requirements or design ideas in light of changing
business or technology conditions.

In February of 2001, in an effort to address the challenges faced by software developers
an initial group of 17 methodologists formed the Agile Software Development Alliance.
This group of people defined a manifesto for encouraging better ways of developing
software, and then based on that manifesto formulated a collection of principles which
defines the criteria for the Agile software development processes. The manifesto defines
four values and twelve principles which form the foundation of the agile movement.

To quote from the Agile Manefesto [16]:

"We are uncovering better ways of developing software by doing it and helping others do
it. We value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Agile processes are focused on frequent production of working code through the fast
iterations and small increments. Iterative development is an approach to software
development where the lifecycle of the project is composed of several iterations that are
operated in sequence. These iterations are self-contained projects; consisting of all of the
traditional functions that are spread out in the plan-driven methods such as: requirement

analysis, coding and testing. The length of an iteration typically varies from one to six
weeks. These timeboxed iterations (with their adaptive and evolutionary refinement of
the code and plan) are at the heart of agile methods [17]. The processes are characterized
by intensive communication between participants, rapid feedback, simple code design
and frequent testing throughout the iteration.

These methods stress productivity and values over heavy-weight process overhead and
the production of artifacts such as upfront detailed design documents that are valued by
the previous plan driven methods. Agile methods promote an iterative mechanism for
producing software, and they further increase the iterative nature of the software by
employing such practices as continuous code integration which requires new code to
continually be integrated into the larger system, allowing for a working version to be
available to the stakeholder or team at a moments notice.

1.5 Scrum

Scrum (named for the scrum in Rugby that denotes “getting an out-of-play ball back into
the game”) is a popular Agile method that utilizes a high level of teamwork to, was
initially developed by Ken Schwaber and Jeff Sutherland, with later collaborations with
Mike Beedle[18]. Scrum provides a project management framework that focuses
development into 30-day Sprint cycles in which a specified set of Backlog features
(system requirements) are delivered. The core practice in Scrum is the use of daily 15-
minute team meetings for coordination and integration.

The Approach as defined by Schwaber was developed specifically for the management of
a development process. It is an empirical approach to software development that
reinforces the ideas of flexibility, adaptability and productivity. If the process or method
needs adjustment during a development cycle, changes to the process and team-workings
are made “in-flight”. While Scrum doesn’t define a particular software development
technique, it does concentrate on how the members of a software development team
should function in order to produce a flexible set of software in an environment where the
system requirements are constantly changing.

The important thing about Scrum is that it forces incremental action which creates a need
for stakeholder dialog and project feedback throughout the development lifecycle.
Referring to Figure 2, in Scrum, the stakeholder1 input is captured in a feature list called
the Backlog. Each month, the development team starts at the top of the Backlog and
selects as many of the top priority features as they think can develop in 30 days (the
typical length of a Sprint, which is similar to a mini-release). The team then works
diligently for a month, completing all of the high priority features (or stories) at which

1 In Agile, the Stakeholder is assumed to be requester of the product

time the result is demonstrated to the stakeholders for feedback. This provides a basis for
rethinking the backlog features and priorities. The stakeholders are allowed to modify
and reprioritize the backlog, after which the team selects its next month’s work from the
top of the list and the process repeats.

Agile methods stress a high degree of communication between the team members. In
Figure 1 you will notice that everyday the team holds a short, 15 minute status meeting
called the “Daily Scrum”. In this meeting team members relate what they are currently
working on, what they plan to do that day and highlight any “blockers” or issues
preventing them from completing work. By bring these items into the forefront and
uncovering any issues or misconceptions, teams are able to stay well informed of
progress of concerns and can quickly address them.

Scrum provides a way for the development team to make regular progress even if the
problem is not well understood. At the same time, it provides a method for stake holders
to discuss the problem and reach consensus. At the same time, the Scrum process
provides a high degree of predictability. Each line on the Backlog is estimated, and the
estimates are added to create an overall project completion estimate. After three months,
a graph of the Backlog estimate against time is a highly reliable indicator of the project’s
progress and estimated completion date. Features may be added or subtracted from the
Backlog monthly to adjust for constraints as well as changing stakeholder interests. The
trend in the Backlog estimate is a reliable indication of whether the project is converging
or diverging.

Figure 2. Diagram of a traditional Scrum Sprint

1.6 Extreme Programming (XP)

Extreme Programming (or XP for short) defined by Kent Beck[19] is a lightweight
development methodology that is typically employed for small to mediums teams that are
developing software in an environment of vague or rapidly changing requirements. The
XP methodology asks development teams to follow four core values: communication,
simplicity, feedback and courage. These values are used as guidelines to define the 12
practices that comprise the method.

XP provides a set of daily practices that when used together, have been demonstrated to
efficiently produce high quality software. These practices include: Whole Team,
Planning Game, Customer Tests, Small Releases, Simple Designs, Pair Programming,
Test-Driven Development, Recapturing, Continuous Integration, Collective Ownership,
Coding Standard and Sustainable Pace. These practices are nothing more than “best
practices” as defined in the industry, but when done “to the extreme” and together, can
move a development team far ahead of any other non-Agile team. An overview of some
of the more “popular” practices include:

1.6.1 Whole team

Many methodologies rely on a divide-and-conquer strategy when attacking a problem.
Typically the development process is broken down into distinct steps, different people
with different skills are required at each step, and results are communicated from one step
to the next through paper documents. However, within an XP team all of the members are
involved 100% all the time, and the team members communicate with one another by
talking and making each other aware of what the other is doing. This is a very effective
strategy, but one that requires all of the team members to stay in constant contact. The
preferred method is to have all members of the team sit together in the same physical
space. Everyone is kept fully informed, and everyone works together. The time between
a question and an accurate answer is kept as close to zero as possible.

1.6.2 Planning Games

Traditional software projects typically focus on the “end date” for a project. Agile
projects on the other hand focus on “how much will get done by the due date?” and “what
should be done next?” Many methodologies are predictive, making a prediction of what
will happen over the course of the project, XP (like most agile methods) is adaptive,
continually making changes during the course of the project in an effort to learn from
mistakes and emphasize what is working well.

In Release Planning the stakeholder articulates the required features and the programmers
estimate the difficulty or sizing. These features are broken down into fine grain
“requirements” we call “stories”. A story is a small feature that can be easily estimated
and implemented during an iteration. Together they lay out a preliminary plan based on
the resource available and estimate what can be accomplished with the available
people/money/time.

1.6.3 Small Releases

Agile teams are producing working systems within each iteration (or sprint) and as a
result they are incrementally improving the system, adding small features or parts of a
feature, every day. When complete, they release running, tested software that can be
deployed to a production environment at the end of every iteration. This means that the
stakeholder can actually use the system and provide feedback to the development team.
This is the best way to get high quality feedback on the system.

1.6.4 Simple Design

Because the development team is trying to turn-out systems quickly, they devise the
simplest thing that could possibly work, and try to implement it. In Agile, teams will
view design and architecture as something done continuously through the course of the
development, not something done just at the beginning.

1.6.5 Pair Programming

Pair programming is the practice of having work done by two programmers sitting side-
by-side working on the same machine. Intuitively this seems unproductive, however there
have reports of higher product quality, better reliability, shorter learning curve for new
developers, lower sensitivity to turnover, and shorter time to market and higher job
satisfaction of developers [20].

1.6.6 Test-Driven Development

In an Agile environment teams don't add any functionality to a working system unless
they have an automated test case to validate that the system doesn’t break. This means
that developers must write the test for a feature, or an interface, before the code that
implements the feature is developed. Test Driven Development ensures that there are
tests for every facet of the system, and any developer that makes a change in a system can
be confident that there is a test that will tell them if they break something. Through this
proactive the cost of change is not only low cost but encouraged.

1.7 Does it work?

But do these methods work?

There have been a number of industry wide surveys that look to see how many
enterprises have actually adopted these Agile methods and attempts to quantify their
success or failures [21-24]. While there can never be a definitive answer, clearly the
evidence points to the fact that, for those that have adopted the methods, there are
improvements in a number of areas of their business.

1.7.1 Quality of Software

For any organization, increasing the quality of their product is a major business driver
and clearly a desirable result. Table 1 pointed to the increasing cost of software
maintenance over time for organizations. Clearly as quality rises, the amount of defects
reported (and needing to be resolved) decreases over time. This leads to a higher level of
customer satisfaction and a higher profit margins for the Enterprise. In a recent survey by
Scott Ambler (Dr. Dobbs journal) he found that for those organizations implementing

Agile methods there is a
marked increase in the final
software product delivered
(see Figure 3).

Why do products or
applications have an
increased level or quality in
an agile project? A look at
the practices described in
section 1.6 helps to shed
some light on this. Test
Driven Development for
example, is an iterative
approach to programming
where agile software
developers must first write
a test that fails before they

write new functional code (write the test that validates the function, then write the code).
There are several advantages of Test Driven Development that Agile teams can realize.
With a test suite in hand, agile developers instantly have code available to validate their
work, ensuring that they test as often and early as possible in the development lifecycle.
Having this test suite also gives the developer confidence to change (or refactor) their
code to keep it as well managed and neat as possible. This test suite is critical to the
developers in order to detect if they have “broken” anything as the result of their
refactoring.

As stated earlier, unlike the waterfall method that would begin its test cycle after the
development is complete, Agile methods continually test during the development cycle.
This test overload has the result of producing code with little or no defects by the end of
the project.

Figure 3. Quality of Agile products

1.7.2 Cost of Producing Software

In Ambler’s 2008 Agile Adoption Survey[23], 37% of the respondents reported a lower
cost of developing software (and the number soars to 77% if we include no change).
Obviously coupling a lower defect product with a lower cost to produce would be a huge
benefit to an organization.

How is this possible?

Referring back to Figure
2, we see that at the end
of an iteration (or a Sprint
in Scrum), the
stakeholder looks at the
remaining features to add
to the product,
prioritizing them for the
development team. After
seeing a working version
of the system under
development, its quite
possible that the
stakeholder would simply
accept what has been
built at this point as “good enough” and the remaining features could be done in
subsequent releases. This has the effect of creating a product at a lower price (by not
spending time and money implementing features that clearly don’t make a substantial
difference to the product) and in less time!

1.7.3 But are they Happy?

But how happy or satisfied is the
stakeholder or requestor of the
system? According to Ambler’s
survey, Agile stakeholders tend
to be quite satisfied with the
products produced from by Agile
teams. The reason for this is
quite simple. Again, referring to
Figure 2, at the end of every
iteration the customer is
reviewing the current work
product. Not so much for a
status, but to provide the

development on how well they are understanding the intent of the requested features and
to modify features which didn’t meet their expectations. The result is that at the end of

Figure 4. Cost of Agile Products

Figure 5. Level of Stakeholder Satisfaction

the project, there are no “surprises” when the final product is delivered and stakeholders
tend to be very happy with the final product.

1.8 Conclusion

As Fred Brooks so eloquently said: “building software will always be hard. There is
inherently no silver bullet” [8]. While there is no one answer to the problems we have in
the creation of software, there are always pockets of hope. Agile methods, while not
perfect, and not the answer for all of our problems, it does go a long way in getting
products to market quicker while responding to the ever changing needs of customers.
The methods may seem a bit unorthodox, but it’s hard to argue with the facts. Agile
methods do work; they do produce results and they are here to stay.

About the author:

Dr. Matthew Ganis is a Senior Technical Staff Member (and Certified Scrum master)
within the IBM CIO organization. He is the IBM community of practice leader for
Agile@IBM, a galvanizing, grass roots effort of over 10,000 IBM Agile practitioners
whose aim is to help share methods, stories and advice. He is a member of the Steering
committee for New York City’s chapter of the APLN (Agile Project Leadership
Network) and serves on the editorial board of the International Journal of AGILE AND
EXTREME SOFTWARE DEVELOPMENT. He has authored a number of papers/books
on his experiences with Agile methods including the soon to be released "Practical Guide
to Distributed Scrum" to be published by IBM Press in January of 2010.

Endnotes

1. Naur, P. and B. Randell, eds. Software Engineering: Report of a conference

sponsored by the NATO Science Committe. 1969, Brussels, Scientific Affairs
Division: Garmisch, Germany. 231.

2. Brooks, F., Mythical Man-month. 1975: Addison-Wesley. 272.

3. Campbell-Kelly. Development and Structure of the International Software

Industry, 1950-1990. in Business History Conference. 1995.

4. Atkinson, R.D. and R.H. Court, The New Economy Index - Understanding

America's Economic Transformation, in Technology, Innovation and New

Economy Project. 1998, The Progressive Policy Institute: Washington, DC.

5. Boehm, B., Software Engineering. IEEE Transactions on Computers, 1976. C-

25(12): p. 1226-1241.

6. Moore, G., Cramming more Components onto Integrated Circuits. Electronics,
1965. 38(8).

7. James, G., Moore's Corollary and EDA, in Electronic Business. 2003.

8. Brooks, F., No Silver Bullet: Essence and Accidents of Software Engineering.
IEEE Computer, 1987. 20(4): p. 10-19.

9. Boehm, B. A View of 20th and 21st Century Software Engineering. in ICSE. 2006.
Shanghai, China: ACM.

10. Boehm, B., Software and its Impact: A Quantitative Assessment. Datamation,
1973. 19(5).

11. Vienneau, R., The Present Value of Software Maintenance. Journal of Parmetrics,
1995. 15(1): p. 18-36.

12. Beck, K., Extreme Programming Explained. 2005, Boston: Addison-Wesley.

13. Highsmith, J., Agile Software Development Ecosystems. 2002: Addison-Wesley.

14. Poppendieck, M. and T. Poppendieck, Lean Software Development: An Agile

Toolkit. 2003, Addison-Wesley: Boston.

15. Drucker, P., The Coming of a New Organization. Harvard Business Review on
Knowledge Management, 1998: p. 1-19.

16. Manifesto, T.A., http://agilemanifesto.org/.

17. Larman, C., Agile and Iterative Development: A Manager's Guide. 2003:
Addison-Wesley.

18. Schwaber, K., M. Beedle, and R. Martin, Agile Software Development with

SCRUM. 2001, New York: Addison Wesley.

19. Beck, K., Extreme Programming Explained: Embrace Change. 1999: Addison-
Wesley.

20. Succi, G., et al., Preliminary Analysis of the Effects of Pair Programming on Job

Satisfaction. Retrieved from:
http://www.agilealliance.org/system/article/file/879/file.pdf.

21. Ambler, S., Agile Adoption Rate Survey: Discussion of the Results. Retrieved
April 4, 2007 from http://www.ambysoft.com/surveys/agileMarch2006.html,
2006.

22. Ambler, S., Agile Adoption Rate Survey (2007), in Dr. Dobbs Journal. 2007.

23. Ambler, S., Agile Adoption Rate Survey: February 2008. Dr. Dobbs Journal,
2008.

24. VersionOne, 3rd Annual Survey: 2008 "The State of Agile Development". 2008:
Alpharetta.

